文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

怎么在matplotlib中使用bar()实现多组数据并列柱状图

2023-06-06 13:12

关注

本篇文章给大家分享的是有关怎么在matplotlib中使用bar()实现多组数据并列柱状图,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

绘制单个数据系列的柱形图比较简单,多组数据柱状图绘制的关键有三点:

由上述可知,多组数据并列柱状图需要计算柱子x轴上的位置和x轴刻度标签。
因此,有两种实现方案:

下面使用第一种方法演示两组数据、三组数据、四组数据的并列柱状图。
使用方法一、方法二演示通用多组并列柱状图的创建方法。

两组数据、三组数据、四组数据的并列柱状图

怎么在matplotlib中使用bar()实现多组数据并列柱状图

import matplotlibimport matplotlib.pyplot as pltimport numpy as npplt.figure(figsize=(13, 4))# 构造x轴刻度标签、数据labels = ['G1', 'G2', 'G3', 'G4', 'G5']first = [20, 34, 30, 35, 27]second = [25, 32, 34, 20, 25]third = [21, 31, 37, 21, 28]fourth = [26, 31, 35, 27, 21]# 两组数据plt.subplot(131)x = np.arange(len(labels)) # x轴刻度标签位置width = 0.25 # 柱子的宽度# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中# x - width/2,x + width/2即每组数据在x轴上的位置plt.bar(x - width/2, first, width, label='1')plt.bar(x + width/2, second, width, label='2')plt.ylabel('Scores')plt.title('2 datasets')# x轴刻度标签位置不进行计算plt.xticks(x, labels=labels)plt.legend()# 三组数据plt.subplot(132)x = np.arange(len(labels)) # x轴刻度标签位置width = 0.25 # 柱子的宽度# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中# x - width,x, x + width即每组数据在x轴上的位置plt.bar(x - width, first, width, label='1')plt.bar(x, second, width, label='2')plt.bar(x + width, third, width, label='3')plt.ylabel('Scores')plt.title('3 datasets')# x轴刻度标签位置不进行计算plt.xticks(x, labels=labels)plt.legend()# 四组数据plt.subplot(133)x = np.arange(len(labels)) # x轴刻度标签位置width = 0.2 # 柱子的宽度# 计算每个柱子在x轴上的位置,保证x轴刻度标签居中plt.bar(x - 1.5*width, first, width, label='1')plt.bar(x - 0.5*width, second, width, label='2')plt.bar(x + 0.5*width, third, width, label='3')plt.bar(x + 1.5*width, fourth, width, label='4')plt.ylabel('Scores')plt.title('4 datasets')# x轴刻度标签位置不进行计算plt.xticks(x, labels=labels)plt.legend()plt.show()

通用多组并列柱状图的简便创建方法

上面的示例比较简易,有一些问题没有考虑。为了便于重复使用,下面的通用方法可调整x轴标签刻度步长、每组柱子的总宽度、每组柱子之间的间隙、组与组之间的间隙。

怎么在matplotlib中使用bar()实现多组数据并列柱状图

方法一

import matplotlibimport matplotlib.pyplot as pltimport numpy as nplabel = ['G1', 'G2', 'G3', 'G4', 'G5']first = [20, 34, 30, 35, 27]second = [25, 32, 34, 20, 25]third = [21, 31, 37, 21, 28]fourth = [26, 31, 35, 27, 21]data = [first, second, third, fourth]def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0):  '''  labels : x轴坐标标签序列  datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致  tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。  group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠  bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠  '''  # ticks为x轴刻度  ticks = np.arange(len(labels)) * tick_step  # group_num为数据的组数,即每组柱子的柱子个数  group_num = len(datas)  # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。  group_width = tick_step - group_gap  # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和  bar_span = group_width / group_num  # bar_width为每个柱子的实际宽度  bar_width = bar_span - bar_gap  # baseline_x为每组柱子第一个柱子的基准x轴位置,随后的柱子依次递增bar_span即可  baseline_x = ticks - (group_width - bar_span) / 2  for index, y in enumerate(datas):    plt.bar(baseline_x + index*bar_span, y, bar_width)  plt.ylabel('Scores')  plt.title('multi datasets')  # x轴刻度标签位置与x轴刻度一致  plt.xticks(ticks, labels)  plt.show()  create_multi_bars(label, data, bar_gap=0.1)

方法二

import matplotlibimport matplotlib.pyplot as pltimport numpy as nplabel = ['G1', 'G2', 'G3', 'G4', 'G5']first = [20, 34, 30, 35, 27]second = [25, 32, 34, 20, 25]third = [21, 31, 37, 21, 28]fourth = [26, 31, 35, 27, 21]data = [first, second, third, fourth]def create_multi_bars(labels, datas, tick_step=1, group_gap=0.2, bar_gap=0):  '''  labels : x轴坐标标签序列  datas :数据集,二维列表,要求列表每个元素的长度必须与labels的长度一致  tick_step :默认x轴刻度步长为1,通过tick_step可调整x轴刻度步长。  group_gap : 柱子组与组之间的间隙,最好为正值,否则组与组之间重叠  bar_gap :每组柱子之间的空隙,默认为0,每组柱子紧挨,正值每组柱子之间有间隙,负值每组柱子之间重叠  '''  # x为每组柱子x轴的基准位置  x = np.arange(len(labels)) * tick_step  # group_num为数据的组数,即每组柱子的柱子个数  group_num = len(datas)  # group_width为每组柱子的总宽度,group_gap 为柱子组与组之间的间隙。  group_width = tick_step - group_gap  # bar_span为每组柱子之间在x轴上的距离,即柱子宽度和间隙的总和  bar_span = group_width / group_num  # bar_width为每个柱子的实际宽度  bar_width = bar_span - bar_gap  # 绘制柱子  for index, y in enumerate(datas):    plt.bar(x + index*bar_span, y, bar_width)  plt.ylabel('Scores')  plt.title('multi datasets')  # ticks为新x轴刻度标签位置,即每组柱子x轴上的中心位置  ticks = x + (group_width - bar_span) / 2  plt.xticks(ticks, labels)  plt.show()create_multi_bars(label, data[:3], bar_gap=0.1)

以上就是怎么在matplotlib中使用bar()实现多组数据并列柱状图,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯