文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

【MySQL进阶教程】InnoDB引擎

2023-09-13 13:58

关注

前言

在这里插入图片描述

本文为 【MySQL进阶教程】InnoDB引擎 相关知识,下边将对InnoDB引擎介绍InnoDB引擎架构事务原理MVCC等进行详尽介绍~

📌博主主页:小新要变强 的主页
👉Java全栈学习路线可参考:【Java全栈学习路线】最全的Java学习路线及知识清单,Java自学方向指引,内含最全Java全栈学习技术清单~
👉算法刷题路线可参考:算法刷题路线总结与相关资料分享,内含最详尽的算法刷题路线指南及相关资料分享~
👉Java微服务开源项目可参考:企业级Java微服务开源项目(开源框架,用于学习、毕设、公司项目、私活等,减少开发工作,让您只关注业务!)


目录

【MySQL进阶教程】InnoDB引擎

在这里插入图片描述

一、InnoDB引擎

InnoDB的逻辑存储结构如下图所示:

在这里插入图片描述

🍀(1)表空间

表空间是InnoDB存储引擎逻辑结构的最高层, 如果用户启用了参数 innodb_file_per_table(在8.0版本中默认开启) ,则每张表都会有一个表空间(xxx.ibd),一个mysql实例可以对应多个表空间,用于存储记录、索引等数据。

🍀(2)段

段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段(Rollback segment),InnoDB是索引组织表,数据段就是B+树的叶子节点, 索引段即为B+树的非叶子节点。段用来管理多个Extent(区)。

🍀(3)区

区,表空间的单元结构,每个区的大小为1M。 默认情况下, InnoDB存储引擎页大小为16K, 即一个区中一共有64个连续的页。

🍀(4)页

页,是InnoDB 存储引擎磁盘管理的最小单元,每个页的大小默认为 16KB。为了保证页的连续性,InnoDB 存储引擎每次从磁盘申请 4-5 个区。

🍀(5)行

行,InnoDB 存储引擎数据是按行进行存放的。

在行中,默认有两个隐藏字段:

二、架构

1️⃣概述

MySQL5.5 版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构。

在这里插入图片描述

2️⃣内存结构

在这里插入图片描述

在左侧的内存结构中,主要分为这么四大块儿: Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer。 接下来介绍一下这四个部分。

🍀(1)Buffer Pool

InnoDB存储引擎基于磁盘文件存储,访问物理硬盘和在内存中进行访问,速度相差很大,为了尽可能弥补这两者之间的I/O效率的差值,就需要把经常使用的数据加载到缓冲池中,避免每次访问都进行磁盘I/O。

在InnoDB的缓冲池中不仅缓存了索引页和数据页,还包含了undo页、插入缓存、自适应哈希索引以及InnoDB的锁信息等等。

缓冲池 Buffer Pool,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page页为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型:

在专用服务器上,通常将多达80%的物理内存分配给缓冲池 。参数设置: show variables like ‘innodb_buffer_pool_size’;

在这里插入图片描述

🍀(2)Change Buffer

Change Buffer,更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据Page没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer
中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

Change Buffer的意义是什么呢?

先来看一幅图,这个是二级索引的结构图:

在这里插入图片描述

与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘IO。有了ChangeBuffer之后,我们可以在缓冲池中进行合并处理,减少磁盘IO。

🍀(3)Adaptive Hash Index

自适应hash索引,用于优化对Buffer Pool数据的查询。MySQL的innoDB引擎中虽然没有直接支持hash索引,但是给我们提供了一个功能就是这个自适应hash索引。因为前面我们讲到过,hash索引在进行等值匹配时,一般性能是要高于B+树的,因为hash索引一般只需要一次IO即可,而B+树,可能需要几次匹配,所以hash索引的效率要高,但是hash索引又不适合做范围查询、模糊匹配等。

InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度,则建立hash索引,称之为自适应hash索引。

自适应哈希索引,无需人工干预,是系统根据情况自动完成。

参数: adaptive_hash_index

🍀(4)Log Buffer

Log Buffer:日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log 、undo log),默认大小为 16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘 I/O。

参数:

在这里插入图片描述

3️⃣磁盘结构

接下来,再来看看InnoDB体系结构的右边部分,也就是磁盘结构:

在这里插入图片描述

🍀(1)System Tablespace

系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)

参数:innodb_data_file_path

在这里插入图片描述

系统表空间,默认的文件名叫 ibdata1。

🍀(2)File-Per-Table Tablespaces

如果开启了innodb_file_per_table开关 ,则每个表的文件表空间包含单个InnoDB表的数据和索引 ,并存储在文件系统上的单个数据文件中。

开关参数:innodb_file_per_table ,该参数默认开启。

在这里插入图片描述

那也就是说,我们没创建一个表,都会产生一个表空间文件,如图:

在这里插入图片描述

🍀(3)General Tablespaces

通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空间。

A. 创建表空间

CREATE TABLESPACE ts_name ADD DATAFILE 'file_name' ENGINE = engine_name;

在这里插入图片描述

B. 创建表时指定表空间

CREATE TABLE xxx ... TABLESPACE ts_name;

在这里插入图片描述

🍀(4)Undo Tablespaces

撤销表空间,MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储undo log日志。

🍀(5)Temporary Tablespaces

InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。

🍀(6)Doublewrite Buffer Files

双写缓冲区,innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件
中,便于系统异常时恢复数据。

🍀(7)Redo Log

重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都会存到该日志中, 用于在刷新脏页到磁盘时,发生错误时, 进行数据恢复使用。

以循环方式写入重做日志文件,涉及两个文件:

在这里插入图片描述
前面我们介绍了InnoDB的内存结构,以及磁盘结构,那么内存中我们所更新的数据,又是如何到磁盘中的呢? 此时,就涉及到一组后台线程,接下来,就来介绍一些InnoDB中涉及到的后台线程。

在这里插入图片描述

4️⃣后台线程

在这里插入图片描述

在InnoDB的后台线程中,分为4类,分别是:Master Thread 、IO Thread、Purge Thread、Page Cleaner Thread。

🍀(1)Master Thread

核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中, 保持数据的一致性,还包括脏页的刷新、合并插入缓存、undo页的回收。

🍀(2)IO Thread

在InnoDB存储引擎中大量使用了AIO来处理IO请求, 这样可以极大地提高数据库的性能,而IO Thread主要负责这些IO请求的回调。

线程类型默认个数职责
Read thread4负责读操作
Write thread4负责写操作
Log thread1负责将日志缓冲区刷新到磁盘
Insert buffer thread1负责将写缓冲区内容刷新到磁盘

我们可以通过以下的这条指令,查看到InnoDB的状态信息,其中就包含IO Thread信息。

show engine innodb status \G;

在这里插入图片描述

🍀(3)Purge Thread

主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收。

🍀(4)Page Cleaner Thread

协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻塞。

三、事务原理

1️⃣事务基础

🍀(1)事务

事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

🍀(2)特性

那实际上,我们研究事务的原理,就是研究MySQL的InnoDB引擎是如何保证事务的这四大特性的。

在这里插入图片描述

而对于这四大特性,实际上分为两个部分。 其中的原子性、一致性、持久化,实际上是由InnoDB中的两份日志来保证的,一份是redo log日志,一份是undo log日志。 而持久性是通过数据库的锁,加上MVCC来保证的。

在这里插入图片描述

2️⃣redo log

重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。

该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中, 用于在刷新脏页到磁盘,发生错误时, 进行数据恢复使用。

如果没有redolog,可能会存在什么问题的? 我们一起来分析一下。

我们知道,在InnoDB引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数据页。 当我们在一个事务中,执行多个增删改的操作时,InnoDB引擎会先操作缓冲池中的数据,如果缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中的数据修改,修改后的数据页我们称为脏页。 而脏页则会在一定的时机,通过后台线程刷新到磁盘中,从而保证缓冲区与磁盘的数据一致。 而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却没有持久化下来,这就出现问题了,没有保证事务的持久性。

在这里插入图片描述

那么,如何解决上述的问题呢? 在InnoDB中提供了一份日志 redo log,接下来我们再来分析一
下,通过redolog如何解决这个问题。

在这里插入图片描述

有了redolog之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在redolog buffer中。在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于redo log进行数据
恢复,这样就保证了事务的持久性。 而如果脏页成功刷新到磁盘 或 或者涉及到的数据已经落盘,此时redolog就没有作用了,就可以删除了,所以存在的两个redolog文件是循环写的。

那为什么每一次提交事务,要刷新redo log 到磁盘中呢,而不是直接将buffer pool中的脏页刷新到磁盘呢 ?

因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。 而redo log在往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。 这种先写日志的方式,称之为 WAL(Write-Ahead Logging)。

3️⃣undo log

回滚日志,用于记录数据被修改前的信息 , 作用包含两个 : 提供回滚(保证事务的原子性) 和
MVCC(多版本并发控制) 。

undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo
log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的
update记录。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

Undo log销毁: undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日志可能还用于MVCC。

Undo log存储: undo log采用段的方式进行管理和记录,存放在前面介绍的 rollback segment回滚段中,内部包含1024个undo log segment。

四、MVCC

1️⃣基本概念

🍀(1)当前读

读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如:select … lock in share mode(共享锁),select … for update、update、insert、delete(排他锁)都是一种当前读。

测试:

在这里插入图片描述

在测试中我们可以看到,即使是在默认的RR隔离级别下,事务A中依然可以读取到事务B最新提交的内容,因为在查询语句后面加上了 lock in share mode 共享锁,此时是当前读操作。当然,当我们加排他锁的时候,也是当前读操作。

🍀(2)快照读

简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。

测试:

在这里插入图片描述

在测试中,我们看到即使事务B提交了数据,事务A中也查询不到。 原因就是因为普通的select是快照读,而在当前默认的RR隔离级别下,开启事务后第一个select语句才是快照读的地方,后面执行相同的select语句都是从快照中获取数据,可能不是当前的最新数据,这样也就保证了可重复读。

🍀(3)MVCC

全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

接下来,我们再来介绍一下InnoDB引擎的表中涉及到的隐藏字段 、undolog 以及 readview,从而来介绍一下MVCC的原理。

2️⃣隐藏字段

🍀(1)介绍

在这里插入图片描述

当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了这三个字段以外,InnoDB还会自动的给我们添加三个隐藏字段及其含义分别是:

隐藏字段含义
DB_TRX_ID最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID。
DB_ROLL_PTR回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个版本。
DB_ROW_ID隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。

而上述的前两个字段是肯定会添加的, 是否添加最后一个字段DB_ROW_ID,得看当前表有没有主键,如果有主键,则不会添加该隐藏字段。

🍀(2)测试

(1)查看有主键的表 stu

进入服务器中的 /var/lib/mysql/itcast/ , 查看stu的表结构信息, 通过如下指令:

ibd2sdi stu.ibd

查看到的表结构信息中,有一栏 columns,在其中我们会看到处理我们建表时指定的字段以外,还有额外的两个字段 分别是:DB_TRX_ID 、 DB_ROLL_PTR ,因为该表有主键,所以没有DB_ROW_ID隐藏字段。

在这里插入图片描述

在这里插入图片描述

(2)查看没有主键的表 employee

建表语句:

create table employee (id int , name varchar(10));

此时,我们再通过以下指令来查看表结构及其其中的字段信息:

ibd2sdi employee.ibd

查看到的表结构信息中,有一栏 columns,在其中我们会看到处理我们建表时指定的字段以外,还有额外的三个字段 分别是:DB_TRX_ID 、 DB_ROLL_PTR 、DB_ROW_ID,因为employee表是没有指定主键的。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3️⃣undolog

🍀(1)介绍

回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。

当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。

而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需要,不会立即被删除。

🍀(2)版本链

有一张表原始数据为:

在这里插入图片描述

然后,有四个并发事务同时在访问这张表。

A. 第一步

在这里插入图片描述

当事务2执行第一条修改语句时,会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

在这里插入图片描述

B.第二步

在这里插入图片描述

当事务3执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记
录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

在这里插入图片描述

C. 第三步

在这里插入图片描述

当事务4执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记
录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

在这里插入图片描述

最终我们发现,不同事务或相同事务对同一条记录进行修改,会导致该记录的undolog生成一条记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。

4️⃣readview

ReadView(读视图)是 快照读 SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务(未提交的)id。

ReadView中包含了四个核心字段:

字段含义
m_ids当前活跃的事务ID集合
min_trx_id最小活跃事务ID
max_trx_id预分配事务ID,当前最大事务ID+1(因为事务ID是自增的)
creator_trx_idReadView创建者的事务ID

而在readview中就规定了版本链数据的访问规则:

trx_id 代表当前undolog版本链对应事务ID。

条件是否可以访问说明
trx_id == creator_trx_id可以访问该版本成立,说明数据是当前这个事务更改的。
trx_id < min_trx_id可以访问该版本成立,说明数据已经提交了。
trx_id > max_trx_id不可以访问该版本成立,说明该事务是在ReadView生成后才开启。
min_trx_id <= trx_id<= max_trx_id如果trx_id不在m_ids中,是可以访问该版本的成立,说明数据已经提交。

不同的隔离级别,生成ReadView的时机不同:

5️⃣原理分析

🍀(1)RC隔离级别

RC隔离级别下,在事务中每一次执行快照读时生成ReadView。

我们就来分析事务5中,两次快照读读取数据,是如何获取数据的?

在事务5中,查询了两次id为30的记录,由于隔离级别为Read Committed,所以每一次进行快照读都会生成一个ReadView,那么两次生成的ReadView如下。

在这里插入图片描述

那么这两次快照读在获取数据时,就需要根据所生成的ReadView以及ReadView的版本链访问规则,到undolog版本链中匹配数据,最终决定此次快照读返回的数据。

A. 先来看第一次快照读具体的读取过程:

在这里插入图片描述

在这里插入图片描述

在进行匹配时,会从undo log的版本链,从上到下进行挨个匹配:

B. 再来看第二次快照读具体的读取过程:

在这里插入图片描述

在这里插入图片描述

在进行匹配时,会从undo log的版本链,从上到下进行挨个匹配:

🍀(2)RR隔离级别

RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。 而RR 是可重复读,在一个事务中,执行两次相同的select语句,查询到的结果是一样的。

那MySQL是如何做到可重复读的呢? 我们简单分析一下就知道了

在这里插入图片描述

我们看到,在RR隔离级别下,只是在事务中第一次快照读时生成ReadView,后续都是复用该ReadView,那么既然ReadView都一样, ReadView的版本链匹配规则也一样, 那么最终快照读返回的结果也是一样的。

所以呢,MVCC的实现原理就是通过 InnoDB表的隐藏字段、UndoLog 版本链、ReadView来实现的。而MVCC + 锁,则实现了事务的隔离性。 而一致性则是由redolog 与 undolog保证。

在这里插入图片描述


后记

在这里插入图片描述

👉Java全栈学习路线可参考:【Java全栈学习路线】最全的Java学习路线及知识清单,Java自学方向指引,内含最全Java全栈学习技术清单~
👉算法刷题路线可参考:算法刷题路线总结与相关资料分享,内含最详尽的算法刷题路线指南及相关资料分享~

来源地址:https://blog.csdn.net/qq_42146402/article/details/128640981

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯