文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

【MySQL进阶教程】 索引详细介绍

2023-10-03 20:23

关注

前言

在这里插入图片描述

本文为 【MySQL进阶教程】 索引 相关知识介绍,下边具体将对索引概述索引结构(包括:索引结构概述二叉树B-TreeB+TreeHash),索引分类索引语法(包括:创建索引查看索引删除索引),SQL性能分析等进行详尽介绍~

📌博主主页:小新要变强 的主页
👉Java全栈学习路线可参考:【Java全栈学习路线】最全的Java学习路线及知识清单,Java自学方向指引,内含最全Java全栈学习技术清单~
👉算法刷题路线可参考:算法刷题路线总结与相关资料分享,内含最详尽的算法刷题路线指南及相关资料分享~
👉Java微服务开源项目可参考:企业级Java微服务开源项目(开源框架,用于学习、毕设、公司项目、私活等,减少开发工作,让您只关注业务!)


目录

文章

在这里插入图片描述

一、索引概述

1️⃣介绍

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足
特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构
上实现高级查找算法,这种数据结构就是索引。

在这里插入图片描述

2️⃣演示

表结构及其数据如下:

在这里插入图片描述

假如我们要执行的SQL语句为 :

 select * from user where age = 45;

🍀(1)无索引情况

在这里插入图片描述

在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很
低。

🍀(2)有索引情况

如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建
立一个二叉树的索引结构。

在这里插入图片描述

此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。

备注: 这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并
不是索引的真实结构,索引的真实结构,后面会详细介绍。

3️⃣特点

优势劣势
提高数据检索的效率,降低数据库的IO成本索引列也是要占用空间的。
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗。索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATEDELETE时,效率降低。

二、索引结构

1️⃣概述

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

索引结构描述
B+Tree索引最常见的索引类型,大部分引擎都支持 B+ 树索引
Hash索引底层数据结构是用哈希表实现的, 只有精确匹配索引列的查询才有效, 不支持范围查询
R-tree(空间索引)空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少
Full-text(全文索引)是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES

上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持
情况。

索引InnoDBMyISAMMemory
B+tree索引支持支持支持
Hash 索引不支持不支持支持
R-tree 索引不支持支持不支持
Full-text5.6版本之后支持支持不支持

注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。

2️⃣二叉树

假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:

在这里插入图片描述

如果主键是顺序插入的,则会形成一个单向链表,结构如下:

在这里插入图片描述

所以,如果选择二叉树作为索引结构,会存在以下缺点:

此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数
据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:

在这里插入图片描述

但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:

所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是
B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。

3️⃣B-Tree

B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。

以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5
个指针:

在这里插入图片描述

知识小贴士: 树的度数指的是一个节点的子节点个数。

我们可以通过一个数据结构可视化的网站来简单演示一下。 https://www.cs.usfca.edu/~gall
es/visualization/BTree.html

在这里插入图片描述

插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 。然后观察一些数据插入过程中,节点的变化情况。

在这里插入图片描述

特点:

4️⃣B+Tree

B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一
下其结构示意图:

在这里插入图片描述

我们可以看到,两部分:

我们可以通过一个数据结构可视化的网站来简单演示一下。 https://www.cs.usfca.edu/~gall
es/visualization/BTree.html

在这里插入图片描述

插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88
120 268 250 。然后观察一些数据插入过程中,节点的变化情况。

在这里插入图片描述

最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:

上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。

MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点
的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。

在这里插入图片描述

5️⃣Hash

MySQL中除了支持B+Tree索引,还支持一种索引类型—Hash索引。

🍀(1)结构

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。

在这里插入图片描述

如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可
以通过链表来解决。

在这里插入图片描述

🍀(2)特点

🍀(3)存储引擎支持

在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是
InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。

思考题: 为什么InnoDB存储引擎选择使用B+tree索引结构?

三、索引分类

1️⃣索引分类

在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。

分类含义特点关键字
主键索引针对于表中主键创建的索引默认自动创建, 只能有一个PRIMARY
唯一索引避免同一个表中某数据列中的值重复可以有多个UNIQUE
常规索引快速定位特定数据可以有多个
全文索引全文索引查找的是文本中的关键词,而不是比较索引中的值可以有多个FULLTEXT

2️⃣聚集索引&二级索引

而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类含义特点
聚集索引(Clustered Index)将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据必须有,而且只有一个
二级索引(Secondary Index)将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键可以存在多个

聚集索引选取规则:

聚集索引和二级索引的具体结构如下:

在这里插入图片描述

接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。

在这里插入图片描述

具体过程如下:

回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取
数据的方式,就称之为回表查询。

四、索引语法

1️⃣创建索引

CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name ( index_col_name,... ) ;

2️⃣查看索引

SHOW INDEX FROM table_name ;

3️⃣删除索引

DROP INDEX index_name ON table_name ;

4️⃣案例演示

先来创建一张表 tb_user,并且查询测试数据。

create table tb_user(  id int primary key auto_increment comment '主键',  name varchar(50) not null comment '用户名',  phone varchar(11) not null comment '手机号',  email varchar(100) comment '邮箱',  profession varchar(11) comment '专业',  age tinyint unsigned comment '年龄',  gender char(1) comment '性别 , 1: 男, 2: 女',  status char(1) comment '状态',  createtime datetime comment '创建时间') comment '系统用户表';INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('吕布', '17799990000', 'lvbu666@163.com', '软件工程', 23, '1','6', '2001-02-02 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('曹操', '17799990001', 'caocao666@qq.com', '通讯工程', 33,'1', '0', '2001-03-05 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('赵云', '17799990002', '17799990@139.com', '英语', 34, '1','2', '2002-03-02 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('孙悟空', '17799990003', '17799990@sina.com', '工程造价', 54,'1', '0', '2001-07-02 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('花木兰', '17799990004', '19980729@sina.com', '软件工程', 23,'2', '1', '2001-04-22 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('大乔', '17799990005', 'daqiao666@sina.com', '舞蹈', 22, '2','0', '2001-02-07 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('露娜', '17799990006', 'luna_love@sina.com', '应用数学', 24,'2', '0', '2001-02-08 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('程咬金', '17799990007', 'chengyaojin@163.com', '化工', 38,'1', '5', '2001-05-23 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('项羽', '17799990008', 'xiaoyu666@qq.com', '金属材料', 43,'1', '0', '2001-09-18 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('白起', '17799990009', 'baiqi666@sina.com', '机械工程及其自动化', 27, '1', '2', '2001-08-16 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('韩信', '17799990010', 'hanxin520@163.com', '无机非金属材料工程', 27, '1', '0', '2001-06-12 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('荆轲', '17799990011', 'jingke123@163.com', '会计', 29, '1','0', '2001-05-11 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('兰陵王', '17799990012', 'lanlinwang666@126.com', '工程造价',44, '1', '1', '2001-04-09 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('狂铁', '17799990013', 'kuangtie@sina.com', '应用数学', 43,'1', '2', '2001-04-10 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('貂蝉', '17799990014', '84958948374@qq.com', '软件工程', 40,'2', '3', '2001-02-12 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('妲己', '17799990015', '2783238293@qq.com', '软件工程', 31,'2', '0', '2001-01-30 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('芈月', '17799990016', 'xiaomin2001@sina.com', '工业经济', 35,'2', '0', '2000-05-03 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('嬴政', '17799990017', '8839434342@qq.com', '化工', 38, '1','1', '2001-08-08 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('狄仁杰', '17799990018', 'jujiamlm8166@163.com', '国际贸易',30, '1', '0', '2007-03-12 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('安琪拉', '17799990019', 'jdodm1h@126.com', '城市规划', 51,'2', '0', '2001-08-15 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('典韦', '17799990020', 'ycaunanjian@163.com', '城市规划', 52,'1', '2', '2000-04-12 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('廉颇', '17799990021', 'lianpo321@126.com', '土木工程', 19,'1', '3', '2002-07-18 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('后羿', '17799990022', 'altycj2000@139.com', '城市园林', 20,'1', '0', '2002-03-10 00:00:00');INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('姜子牙', '17799990023', '37483844@qq.com', '工程造价', 29,'1', '4', '2003-05-26 00:00:00');

表结构中插入的数据如下:

在这里插入图片描述

数据准备好了之后,接下来,我们就来完成如下需求:
A. name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。

CREATE INDEX idx_user_name ON tb_user(name);

B. phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。

CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);

C. 为profession、age、status创建联合索引。

CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);

D. 为email建立合适的索引来提升查询效率。

CREATE INDEX idx_email ON tb_user(email);

完成上述的需求之后,我们再查看tb_user表的所有的索引数据。

show index from tb_user;

在这里插入图片描述

五、SQL性能分析

1️⃣SQL执行频率

MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:

-- session 是查看当前会话 ;-- global 是查询全局数据 ;SHOW GLOBAL STATUS LIKE 'Com_______';

在这里插入图片描述

Com_delete: 删除次数
Com_insert: 插入次数
Com_select: 查询次数
Com_update: 更新次数

我们可以在当前数据库再执行几次查询操作,然后再次查看执行频次,看看 Com_select 参数会不会变化。

在这里插入图片描述

通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以查询为主,那么就要考虑对数据库的索引进行优化了。

那么通过查询SQL的执行频次,我们就能够知道当前数据库到底是增删改为主,还是查询为主。 那假如说是以查询为主,我们又该如何定位针对于那些查询语句进行优化呢? 次数我们可以借助于慢查询志。

接下来,我们就来介绍一下MySQL中的慢查询日志。

2️⃣慢查询日志

慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。

MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。

在这里插入图片描述

如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

# 开启MySQL慢日志查询开关slow_query_log=1# 设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志long_query_time=2

配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息
/var/lib/mysql/localhost-slow.log。

systemctl restart mysqld

然后,再次查看开关情况,慢查询日志就已经打开了。

在这里插入图片描述

测试:

A. 执行如下SQL语句 :

select * from tb_user; -- 这条SQL执行效率比较高, 执行耗时 0.00secselect count(*) from tb_sku; -- 由于tb_sku表中, 预先存入了1000w的记录, count一次,耗时13.35sec

在这里插入图片描述

B. 检查慢查询日志 :

最终我们发现,在慢查询日志中,只会记录执行时间超多我们预设时间(2s)的SQL,执行较快的SQL
是不会记录的。

在这里插入图片描述

那这样,通过慢查询日志,就可以定位出执行效率比较低的SQL,从而有针对性的进行优化。

3️⃣profile详情

show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling参数,能够看到当前MySQL是否支持profile操作:

SELECT @@have_profiling ;

在这里插入图片描述

可以看到,当前MySQL是支持 profile操作的,但是开关是关闭的。可以通过set语句在session/global级别开启profiling:

SET profiling = 1;

开关已经打开了,接下来,我们所执行的SQL语句,都会被MySQL记录,并记录执行时间消耗到哪儿去
了。 我们直接执行如下的SQL语句:

select * from tb_user;select * from tb_user where id = 1;select * from tb_user where name = '白起';select count(*) from tb_sku;

执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:

-- 查看每一条SQL的耗时基本情况show profiles;-- 查看指定query_id的SQL语句各个阶段的耗时情况show profile for query query_id;-- 查看指定query_id的SQL语句CPU的使用情况show profile cpu for query query_id;

查看每一条SQL的耗时情况:

在这里插入图片描述

查看指定SQL各个阶段的耗时情况 :

在这里插入图片描述

4️⃣explain

EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。

语法:

-- 直接在select语句之前加上关键字 explain / descEXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;

在这里插入图片描述

Explain 执行计划中各个字段的含义:

字段含义
idselect查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)。
select_type表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION 中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等
type表示连接类型,性能由好到差的连接类型为NULL、system、const、eq_ref、ref、range、 index、all 。
possible_key显示可能应用在这张表上的索引,一个或多个。
key实际使用的索引,如果为NULL,则没有使用索引。
key_len表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下, 长度越短越好 。
rowsMySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的。
filtered表示返回结果的行数占需读取行数的百分比, filtered 的值越大越好。

后记

在这里插入图片描述

👉Java全栈学习路线可参考:【Java全栈学习路线】最全的Java学习路线及知识清单,Java自学方向指引,内含最全Java全栈学习技术清单~
👉算法刷题路线可参考:算法刷题路线总结与相关资料分享,内含最详尽的算法刷题路线指南及相关资料分享~

来源地址:https://blog.csdn.net/qq_42146402/article/details/128554750

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯