文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python如何通过手肘法实现k_means聚类详解

2023-05-16 20:29

关注

1.导入matplotlib.pylab和numpy包

import matplotlib.pylab as plt
import numpy as np

2.定义实现需要用到的函数

(1)计算两点距离

# 计算两点距离
def distance(a, b):
    return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)

(2)取集合的中心点

# 取集合中心点
def means(arr):
    x = 0
    y = 0
    for i in range(len(arr)):
        x += arr[i][0]
        y += arr[i][1]
    if len(arr) > 0:
        x /= len(arr)
        y /= len(arr)
    return np.array([x, y])

(3)寻找下一个聚类中心点,其距离已找到的聚类中心点最远,用于初始化聚类中心

# 寻找距离已加入聚类中心数组最远的点,用于初始化聚类中心
def farthest(k_arr, arr):
    point = [0, 0]
    max_dist = 0
    for e in arr:
        dist = 0
        for i in range(len(k_arr)):
            dist += distance(k_arr[i], e)
        if dist > max_dist:
            max_dist = dist
            point = e
    return point

3.k_means方法

(1)先读取表中的数据

(2)如何随机获取其中一个点作为第一个聚类中心

(3)接下来每次获取距离之间所有聚类中心点最远的点作为下一个聚类中心点

(4)每次迭代时,遍历集合中的所有点,将其加入距离最小的聚类中心点数组中,更新聚类中心

(5)最后将数据可视化,返回分类好的数组

def k_means(k):
    # 读取数据
    kmeans_data = np.genfromtxt('kmeans_data.txt', dtype=float)
    # 初始化
    r = np.random.randint(len(kmeans_data) - 1)
    k_arr = np.array([kmeans_data[r]])
    class_arr = [[]]
    for i in range(k - 1):
        k_arr = np.concatenate([k_arr, np.array([farthest(k_arr, kmeans_data)])])
        class_arr.append([])

    # 迭代聚类
    n = 20
    class_temp = class_arr
    for i in range(n):  # 迭代次数
        class_temp = class_arr
        for e in kmeans_data:  # 把集合中的每一个点聚到离它最近的类
            k_idx = 0  # 假设距离第一个聚类中心最近
            min_d = distance(e, k_arr[0])
            for j in range(len(k_arr)):  # 获取距离该元素最近的聚类中心
                if distance(e, k_arr[j]) < min_d:
                    min_d = distance(e, k_arr[j])
                    k_idx = j
            class_temp[k_idx].append(e)  # 把该元素加到对应的类中
        # 更新聚类中心
        for l in range(len(k_arr)):
            k_arr[l] = means(class_temp[l])
    # 将数据可视化
    col = ['red', 'blue', 'yellow', 'green', 'pink', 'black', 'purple', 'orange', 'brown']
    for i in range(k):
        plt.scatter(k_arr[i][0], k_arr[i][1], linewidths=10, color=col[i])
        plt.scatter([e[0] for e in class_temp[i]], [e[1] for e in class_temp[i]], color=col[i])
    plt.show()
    # 返回分类好的簇
    return class_temp

4.手肘法获取最佳的k值

(1)遍历k值的范围,从1到9

(2)kmeans获取分类好的数组

(3)遍历kmeans计算对应的SSE

(4)画出对应k值的SSE的折线图

# 通过肘部观察法获取k值
def getK():
    mean_dist = []
    for k in range(1, 10):
        # 获取分成k簇后的元素
        kmeans = k_means(k)
        sse = 0
        # 计算SSE
        for i in range(len(kmeans)):
            mean = means(kmeans[i])
            for e in kmeans[i]:
                sse += distance(mean, e) ** 2
        mean_dist.append(sse)
    # 化成折线图观察最佳的k值
    plt.plot(range(1, 10), mean_dist, 'bx-')
    plt.ylabel('SSE')
    plt.xlabel('k')
    plt.show()

折线图

5. main函数

if __name__ == '__main__':
    getK()
    # 通过观察可知, 4 是最佳的k值
    k_means(4)

散点图

6. 完整代码

import matplotlib.pylab as plt
import numpy as np

# 计算两点距离
def distance(a, b):
    return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)

# 取集合中心点
def means(arr):
    x = 0
    y = 0
    for i in range(len(arr)):
        x += arr[i][0]
        y += arr[i][1]
    if len(arr) > 0:
        x /= len(arr)
        y /= len(arr)
    return np.array([x, y])

# 寻找距离已加入聚类中心数组最远的点,用于初始化聚类中心
def farthest(k_arr, arr):
    point = [0, 0]
    max_dist = 0
    for e in arr:
        dist = 0
        for i in range(len(k_arr)):
            dist += distance(k_arr[i], e)
        if dist > max_dist:
            max_dist = dist
            point = e
    return point

def k_means(k):
    # 读取数据
    kmeans_data = np.genfromtxt('kmeans_data.txt', dtype=float)
    # 初始化
    r = np.random.randint(len(kmeans_data) - 1)
    k_arr = np.array([kmeans_data[r]])
    class_arr = [[]]
    for i in range(k - 1):
        k_arr = np.concatenate([k_arr, np.array([farthest(k_arr, kmeans_data)])])
        class_arr.append([])

    # 迭代聚类
    n = 20
    class_temp = class_arr
    for i in range(n):  # 迭代次数
        class_temp = class_arr
        for e in kmeans_data:  # 把集合中的每一个点聚到离它最近的类
            k_idx = 0  # 假设距离第一个聚类中心最近
            min_d = distance(e, k_arr[0])
            for j in range(len(k_arr)):  # 获取距离该元素最近的聚类中心
                if distance(e, k_arr[j]) < min_d:
                    min_d = distance(e, k_arr[j])
                    k_idx = j
            class_temp[k_idx].append(e)  # 把该元素加到对应的类中
        # 更新聚类中心
        for l in range(len(k_arr)):
            k_arr[l] = means(class_temp[l])
    # 将数据可视化
    col = ['red', 'blue', 'yellow', 'green', 'pink', 'black', 'purple', 'orange', 'brown']
    for i in range(k):
        plt.scatter(k_arr[i][0], k_arr[i][1], linewidths=10, color=col[i])
        plt.scatter([e[0] for e in class_temp[i]], [e[1] for e in class_temp[i]], color=col[i])
    plt.show()
    # 返回分类好的簇
    return class_temp

# 通过肘部观察法获取k值
def getK():
    mean_dist = []
    for k in range(1, 10):
        # 获取分成k簇后的元素
        kmeans = k_means(k)
        sse = 0
        # 计算SSE
        for i in range(len(kmeans)):
            mean = means(kmeans[i])
            for e in kmeans[i]:
                sse += distance(mean, e) ** 2
        mean_dist.append(sse)
    # 化成折线图观察最佳的k值
    plt.plot(range(1, 10), mean_dist, 'bx-')
    plt.ylabel('SSE')
    plt.xlabel('k')
    plt.show()

if __name__ == '__main__':
    getK()
    # 通过观察可知, 4 是最佳的k值
    k_means(4)

总结

到此这篇关于Python如何通过手肘法实现k_means聚类的文章就介绍到这了,更多相关Python手肘法实现k_means聚类内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯