文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python 多进程并发操作中进程池Pool的实例

2022-06-04 19:39

关注

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了。

Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。这里有一个简单的例子:


#!/usr/bin/env python
#coding=utf-8
"""
Author: Squall
Last modified: 2011-10-18 16:50
Filename: pool.py
Description: a simple sample for pool class
"""

from multiprocessing import Pool
from time import sleep

def f(x):
  for i in range(10):
    print '%s --- %s ' % (i, x)
    sleep(1)


def main():
  pool = Pool(processes=3)  # set the processes max number 3
  for i in range(11,20):
    result = pool.apply_async(f, (i,))
  pool.close()
  pool.join()
  if result.successful():
    print 'successful'


if __name__ == "__main__":
  main()

先创建容量为3的进程池,然后将f(i)依次传递给它,运行脚本后利用ps aux | grep pool.py查看进程情况,会发现最多只会有三个进程执行。pool.apply_async()用来向进程池提交目标请求,pool.join()是用来等待进程池中的worker进程执行完毕,防止主进程在worker进程结束前结束。但必pool.join()必须使用在pool.close()或者pool.terminate()之后。其中close()跟terminate()的区别在于close()会等待池中的worker进程执行结束再关闭pool,而terminate()则是直接关闭。result.successful()表示整个调用执行的状态,如果还有worker没有执行完,则会抛出AssertionError异常。

利用multiprocessing下的Pool可以很方便的同时自动处理几百或者上千个并行操作,脚本的复杂性也大大降低。

——————————————————————————————————

Python多进程并发(multiprocessing)

由于Python设计的限制(我说的是咱们常用的CPython)。最多只能用满1个CPU核心。

Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。

1、新建单一进程

如果我们新建少量进程,可以如下:


import multiprocessing
import time

def func(msg):
for i in xrange(3):
print msg
time.sleep(1)

if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))</ 
p.start()
p.join()
print "Sub-process done."

2、使用进程池

是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。

注意要用apply_async,如果落下async,就变成阻塞版本了。

processes=4是最多并发进程数量。


import
multiprocessing
import
time
 
def
func(msg):
  for
i
in
xrange(3):
    print
msg
    time.sleep(1)
 
if
__name__
==
"__main__":
  pool
=
multiprocessing.Pool(processes=4)
  for
i
in
xrange(10):
    msg
=
"hello
 %d"
%(i)
    pool.apply_async(func,
(msg,
))
  pool.close()
  pool.join()
  print
"Sub-process(es)
 done."
 


3、使用Pool,并需要关注结果

更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:



import multiprocessing

import time



def func(msg):

for i in xrange(3):

print msg

time.sleep(1)

return "done " + msg



if __name__ == "__main__":

pool = multiprocessing.Pool(processes=4)

result = []

for i in xrange(10):

msg = "hello %d" %(i)

result.append(pool.apply_async(func, (msg, )))

pool.close()

pool.join()

for res in result:

print res.get()

print "Sub-process(es) done."

2014.12.25更新

根据网友评论中的反馈,在Windows下运行有可能崩溃(开启了一大堆新窗口、进程),可以通过如下调用来解决:


multiprocessing.freeze_support()

简易worker multiprocessing.Pool

多任务模型设计是一个比较复杂的逻辑,但是python对于多任务的处理却有种种方便的类库,不需要过多的纠结进程/线程间的操作细节。比如multiprocessing.Pool就是其中之一。

官方给的范例也很简单。


from multiprocessing import Pool

def f(x):
  return x*x

if __name__ == '__main__':
  pool = Pool(processes=4)       # start 4 worker processes
  result = pool.apply_async(f, [10])  # evaluate "f(10)" asynchronously
  print result.get(timeout=1)      # prints "100" unless your computer is *very* slow
  print pool.map(f, range(10))     # prints "[0, 1, 4,..., 81]"

并未做太多的详细解释。正好我手头有一段代码,需要请求几百个url,解析html页面获取一些信息,单线程for循环效率极低,因此看到了这个模块,想用这个实现多任务分析,参考代码如下:


from multiprocessing import Pool

def analyse_url(url):
  #do something with this url
  return analysis_result

if __name__ == '__main__':
  pool = Pool(processes=10)
  result = pool.map(analyse_url, url_list)

确实比以前单线程for循环url_list列表,一个个请求analyse_url要快得多,但是带来的问题就是一旦pool.map没执行完就ctrl-c中断程序,程序就会异常,永远无法退出,参考stackoverflow的这个帖子,修改为以下代码:


#result = pool.map(analyse_url, url_list)
result = pool.map_async(analyse_url, url_list).get(120)

至此问题完美解决。

以上这篇Python 多进程并发操作中进程池Pool的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯