文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

详解Java如何实现FP-Growth算法

2024-04-02 19:55

关注

FP-Growth算法的Java实现

这篇文章重点讲一下实现。需要两次扫描来构建FP树

第一次扫描

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局支持度降序排序。

按照这个需求,可能的难点为如何按照全局支持度对每个事务中的item排序。

我的实现思路

代码




    private void scanDataSet(String path) throws IOException {
        if(path.equals("")){
            path = filePath;
        }
        FileReader fr = new FileReader(path);
        BufferedReader bufferedReader = new BufferedReader(fr);
        String str;
//        int maxLength = 0;
        while ( (str = bufferedReader.readLine())!=null){
            ArrayList<Integer> transaction = new ArrayList<>();
            String[] tempEntry ;
            tempEntry = str.split(" ");
            for(int i =0;i< tempEntry.length;i++){
                if(!tempEntry[i].equals("")){
                    int itemValue = Integer.parseInt(tempEntry[i]);
                    transaction.add(itemValue);
                    if(!similarSingleItemLinkedListHeadsTable.containsKey(itemValue)){
                        similarSingleItemLinkedListHeadsTable.put(itemValue, new SimilarSingleItemLinkedListHead(itemValue,null,1));
                    }else{
                        //将该项的全局支持度+1
                        similarSingleItemLinkedListHeadsTable.get(itemValue).addSupTotal();
                    }
                }
            }
//            if(tempEntry.length>maxLength){
//                maxLength = tempEntry.length;
//            }

            sourceDataSet.add(transaction);

        }
//        System.out.println(maxLength);
        deleteNonFreqInSSILLHTAndSort();
        deleteNonFreqInSDSAndSort();
        bufferedReader.close();
        fr.close();
    }
        
    private void deleteNonFreqInSSILLHTAndSort() {
        Hashtable<Integer,SimilarSingleItemLinkedListHead> copyOfSSILLHT =
                (Hashtable<Integer, SimilarSingleItemLinkedListHead>) similarSingleItemLinkedListHeadsTable.clone();
        Set<Integer> keySet = copyOfSSILLHT.keySet();
        //删除非频繁项
        for(int key: keySet){
            if(similarSingleItemLinkedListHeadsTable.get(key).getSupTotal()<minSupCnt){//低于支持度阈值
                similarSingleItemLinkedListHeadsTable.remove(key);
            }
        }
        //按全局支持度排序
        similarSingleItemLinkedListHeadList = new ArrayList<>(similarSingleItemLinkedListHeadsTable.values());
        similarSingleItemLinkedListHeadList.sort(new Comparator<SimilarSingleItemLinkedListHead>() {
            @Override
            public int compare(SimilarSingleItemLinkedListHead o1, SimilarSingleItemLinkedListHead o2) {
                return o2.getSupTotal() - o1.getSupTotal();
            }
        });

    }
        
    private void deleteNonFreqInSDSAndSort(){
        freqSourceSortedDataSet = (ArrayList<ArrayList<Integer>>) sourceDataSet.clone();
        for(int i =0;i<sourceDataSet.size();i++){
            for(int j = 0;j<sourceDataSet.get(i).size();j++){
                int item = sourceDataSet.get(i).get(j);
                // 由于此时SSILLHT里的项都是频繁项,只需要确定item是否存在在其中即可,存在即代表频繁.
                if(visitSupTotal(item)==-1){
                    //将非频繁项标记为最小整数值
                    freqSourceSortedDataSet.get(i).set(j,Integer.MIN_VALUE);
                }
            }
            //将标记的项移除.
            freqSourceSortedDataSet.get(i).removeIf(e->e == Integer.MIN_VALUE);
            insertSort(freqSourceSortedDataSet.get(i));
        }
        freqSourceSortedDataSet.removeIf(e->e.size() == 0);

    }

第二次扫描

第二次扫描,构造FP树。
参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息

这里比较简单,因为已经有过滤、排序好的数据freqSourceSortedDataSet。我们只需要


  
    private void buildFPTree(){
        for(ArrayList<Integer>trans:freqSourceSortedDataSet){
            Node curTreeNode = fpTree.root;
            for(int item :trans){
                if(!curTreeNode.children.containsKey(item)){
                    Node node = new Node(item,1);
                    curTreeNode.children.put(item,node);
                    node.father = curTreeNode;
                    buildSimilarSingleItemLinkedList(item,curTreeNode);
                }else{
                    curTreeNode.children.get(item).sup++;
                }
                curTreeNode=curTreeNode.children.get(item);
            }
        }
    }
    
    private void buildSimilarSingleItemLinkedList(int item,Node curTreeNode){
        //找到该item在相似项链表中的位置

        int index = searchForItemInHeadsList(item,
                (ArrayList<SimilarSingleItemLinkedListHead>) similarSingleItemLinkedListHeadList);
        if(similarSingleItemLinkedListHeadList.get(index).next == null){
            similarSingleItemLinkedListHeadList.get(index).next = curTreeNode.children.get(item);
        }else{
            Node visitNode = similarSingleItemLinkedListHeadList.get(index).next;
            while (visitNode.nextSimilar!=null){

                visitNode = visitNode.nextSimilar;
            }
            if(visitNode != curTreeNode.children.get(item))
                visitNode.nextSimilar = curTreeNode.children.get(item);
        }
    }
    
    private int searchForItemInHeadsList(int item, ArrayList<SimilarSingleItemLinkedListHead> similarSingleItemLinkedListHeads) {
        for(int i =0;i<similarSingleItemLinkedListHeads.size();i++){
            if(similarSingleItemLinkedListHeads.get(i).getItemValue() == item){
                return i;
            }
        }
        return -1;
    }
    

挖掘频繁项集

这一部分个人觉得是实现上最困难的部分。但是我在B站或其他地方一涉及到这个地方都讲得很快(B站也没两个视频讲这玩意儿,吐)。还有不同的概念,比如在黑皮书上讲的是前缀路径,在其他地方有条件模式基等概念。接下来的代码均按照前缀路径的说法来实现。

我们来捋一捋思路,挖掘频繁项集需要干什么。

首先需要从后向前遍历相似项链表的列表(这一列表已经在第一次扫描中按全局支持度排过序了)的每一项。

对每一项递归地进行如下步骤:

①记录前缀路径。我使用的方法是用一个HashSet记录前缀路径中出现的所有节点。

②记录该FP树的每一item的支持度。类似于前面的第一次扫描。

③根据记录的支持度,如果item频繁,则该item和当前的后缀为频繁项集。

④再根据record构建该FP树的相似项链表列表,去除掉非频繁项(类似第一次扫描)和当前item构成条件FP树。这里并不需要重新建立一个FP树的结构来构成条件FP树,因为记录前缀路径只需要访问相似项和父项。

⑤对相似项链表列表的剩余项再进行①步骤,直到相似项链表列表中没有项,为终止。



    public void run(int minSupCnt,String path,int pT) throws IOException {
        this.printThreshold = pT;
        this.minSupCnt = minSupCnt;
        scanDataSet(path);
        buildFPTree();
        for(int i = similarSingleItemLinkedListHeadList.size()-1;i>=0;i--){
            genFreqItemSet(similarSingleItemLinkedListHeadList.get(i).getItemValue()
                    ,fpTree,similarSingleItemLinkedListHeadList,new TreeSet<>());
        }
        //genFreqItemSet(14,fpTree,similarSingleItemLinkedListHeadList,new TreeSet<>());
        System.out.println("频繁项集个数:\t"+cntOfFreqSet);
    }

    private void genFreqItemSet(int last,FPTree fPTree,
                                List<SimilarSingleItemLinkedListHead>fatherSimilarSingleItemLinkedListHeads,TreeSet<Integer>freqItemSet) {

        FPTree conditionalFPTree = new FPTree();
        List<SimilarSingleItemLinkedListHead>similarSingleItemLinkedListHeads = new ArrayList<>();

        TreeSet<Integer>localFreqItemSet = (TreeSet<Integer>) freqItemSet.clone();
        int index ;
        index = searchForItemInHeadsList(last,
                (ArrayList<SimilarSingleItemLinkedListHead>) fatherSimilarSingleItemLinkedListHeads);

        Node firstNode = fatherSimilarSingleItemLinkedListHeads.get(index).next;
        HashSet<Node>record = new HashSet<>();  //用于记录前缀路径上出现的节点
        //记录前缀路径
        if(firstNode!=null){
            record.add(firstNode);
            Node nodeToVisitFather = firstNode;
            Node nodeToVisitSimilar = firstNode;
            while (nodeToVisitSimilar!=null){
                nodeToVisitSimilar.supInCFP = nodeToVisitSimilar.sup;
                nodeToVisitFather = nodeToVisitSimilar;
                while (nodeToVisitFather!=null){
                    // 计算supInCFT
                    if(nodeToVisitFather!=nodeToVisitSimilar)
                        nodeToVisitFather.supInCFP += nodeToVisitSimilar.supInCFP;
                    record.add(nodeToVisitFather);
                    nodeToVisitFather = nodeToVisitFather.father;
                }
                nodeToVisitSimilar = nodeToVisitSimilar.nextSimilar;
            }

            //记录在子树中的支持度
            Hashtable<Integer,Integer> supRecord = new Hashtable<>();
            record.forEach(new Consumer<Node>() {
                @Override
                public void accept(Node node) {
                    int item = node.item;
                    if(item == -1 ){    //根节点
                        return;
                    }
                    if(supRecord.containsKey(item)){
                        supRecord.put(item,supRecord.get(item)+ node.supInCFP);
                    }else{
                        supRecord.put(item,node.supInCFP);
                    }

                }
            });
            //输出结果
            if(supRecord.get(last)>=minSupCnt){
                localFreqItemSet.add(last);
                if(localFreqItemSet.size()>=printThreshold && !result.contains(localFreqItemSet)){
                    cntOfFreqSet++;
//                    for(int i = localFreqItemSet.size()-1;i>=0;i--){
//                        System.out.print(localFreqItemSet.get(i)+" ");
//                    }
                    localFreqItemSet.forEach(new Consumer<Integer>() {
                        @Override
                        public void accept(Integer integer) {
                            System.out.print(integer+" ");
                        }
                    });
                    result.add(localFreqItemSet);

                    System.out.println("");
                }
            }

            //构建相似项链表
            record.forEach(new Consumer<Node>() {
                @Override
                public void accept(Node node) {
                    if(node.item == -1){    //根节点
                        Node visitNode = node;
                        buildConditionalFPTree(conditionalFPTree.root, visitNode,record,
                                (ArrayList<SimilarSingleItemLinkedListHead>) similarSingleItemLinkedListHeads,supRecord,last);
                    }
                }
            });
            //按支持度降序排序
            similarSingleItemLinkedListHeads.sort(new Comparator<SimilarSingleItemLinkedListHead>() {
                @Override
                public int compare(SimilarSingleItemLinkedListHead o1, SimilarSingleItemLinkedListHead o2) {
                    return o2.getSupTotal() - o1.getSupTotal();
                }
            });

            if(similarSingleItemLinkedListHeads.size()>=1){
                //递归搜索频繁项
                for(int i =similarSingleItemLinkedListHeads.size()-1;i>=0;i--){
                    genFreqItemSet(similarSingleItemLinkedListHeads.get(i).getItemValue(),
                            conditionalFPTree,similarSingleItemLinkedListHeads,localFreqItemSet);
                    // similarSingleItemLinkedListHeads.remove(i);
                }
            }
        }
    }

    private void buildConditionalFPTree(Node rootNode,Node originalNode,HashSet<Node>record
            ,ArrayList<SimilarSingleItemLinkedListHead>similarSingleItemLinkedListHeads,Hashtable<Integer,Integer>supRecord,int last){
        if(originalNode.children!=null){
            for(int key:originalNode.children.keySet()){    //遍历originalNode的所有儿子节点,检查其是否在前缀路径中
                Node tempNode = originalNode.children.get(key);
                if(record.contains(tempNode)){
                    Node addedNode = new Node(tempNode.item, tempNode.supInCFP);
                    if(last == key){    //去除last的所有节点
                        tempNode.supInCFP = 0;
                        continue;
                    }
                    if(supRecord.get(key)>=minSupCnt){
                        //addedNode 拷贝 tempNode除儿子节点外的属性
                        addedNode.supInCFP = tempNode.supInCFP;
                        rootNode.children.put(tempNode.item, addedNode);
                        addedNode.father = rootNode;
                        //构建相似项表
                        int i = searchForItemInHeadsList(tempNode.item,similarSingleItemLinkedListHeads);
                        if(i==-1){
                            similarSingleItemLinkedListHeads.add(new SimilarSingleItemLinkedListHead(key,addedNode, addedNode.supInCFP));
                        }else{
                            similarSingleItemLinkedListHeads.get(i).setSupTotal(similarSingleItemLinkedListHeads.get(i).getSupTotal()+addedNode.supInCFP);
                            Node visitNode = similarSingleItemLinkedListHeads.get(i).next;
                             while (visitNode.nextSimilar!=null){
                                visitNode = visitNode.nextSimilar;
                            }
                            if(visitNode!=addedNode){
                                visitNode.nextSimilar= addedNode;
                            }
                        }
                        buildConditionalFPTree(addedNode,originalNode.children.get(key),record,similarSingleItemLinkedListHeads,supRecord,last);
                        addedNode.supInCFP = 0; //将supInCFP重置为0;
                    }else{
                        buildConditionalFPTree(rootNode,originalNode.children.get(key),record,similarSingleItemLinkedListHeads,supRecord,last);
                    }

                }
            }
        }
    }

完整代码

FP-Growth

到此这篇关于详解Java如何实现FP-Growth算法的文章就介绍到这了,更多相关Java实现FP-Growth算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯