文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python爬虫之使用BeautifulSoup和Requests抓取网页数据

2023-05-14 08:45

关注

一、简介

本篇文章将介绍如何使用 Python 编写一个简单的网络爬虫,从网页中提取有用的数据。

网络爬虫的实现原理可以归纳为以下几个步骤:

二、网络爬虫的基本概念

网络爬虫,又称网页蜘蛛、网络机器人,是一种自动从互联网上抓取网页信息的程序。爬虫通常按照一定的规则,访问网页并提取有用的数据。

三、Beautiful Soup 和 Requests 库简介

  1. Beautiful Soup:一个用于解析 HTML 和 XML 文档的 Python 库,它提供了一种简单的方法来提取网页中的数据。
  2. Requests:一个简单易用的 Python HTTP 库,用于向网站发送请求并获取响应内容。

四、选择一个目标网站

本文将以维基百科的某个页面为例,抓取页面中的和段落信息。为简化示例,我们将爬取 Python 语言的维基百科页面(https://en.wikipedia.org/wiki/Python_(programming_language)。

五、使用 Requests 获取网页内容

首先,安装 Requests 库:

pip install requests

然后,使用 Requests 向目标网址发送 GET 请求,并获取网页的 HTML 内容:

import requests
 
url = "https://en.wikipedia.org/wiki/Python_(programming_language)"
response = requests.get(url)
html_content = response.text

六、使用 Beautiful Soup 解析网页内容

安装 Beautiful Soup:

pip install beautifulsoup4

接下来,使用 Beautiful Soup 解析网页内容,并提取所需数据:

from bs4 import BeautifulSoup
 
soup = BeautifulSoup(html_content, "html.parser")
 
# 提取
title = soup.find("h1", class_="firstHeading").text
 
# 提取段落
paragraphs = soup.find_all("p")
paragraph_texts = [p.text for p in paragraphs]
 
# 打印提取到的数据
print("Title:", title)
print("Paragraphs:", paragraph_texts)

七、提取所需数据并保存

将提取到的数据保存到文本文件中:

with open("wiki_python.txt", "w", encoding="utf-8") as f:
    f.write(f"Title: {title}\n")
    f.write("Paragraphs:\n")
    for p in paragraph_texts:
        f.write(p)
        f.write("\n")

八、总结及拓展

本文通过实现一个简单的网络爬虫,帮助读者了解如何使用 Python 从网页中提取有用的数据。虽然这个爬虫很简单,但它为进一步研究网络爬虫和数据提取提供了基础。在实际应用中,可以尝试实现更复杂的功能,如自动翻页、数据清洗和存储、分布式爬取等。

以下是一些建议和拓展方向:

  1. 学习正则表达式:正则表达式(Regular Expression)是一种强大的文本匹配和提取工具。在网络爬虫中,可以使用正则表达式来实现更灵活的数据提取。
  2. 学习XPath和CSS选择器:除了使用Beautiful Soup,您还可以学习XPath和CSS选择器,使用lxml、cssselect等库来提取网页数据。
  3. 分布式爬虫:为了提高爬虫的效率和稳定性,可以尝试实现分布式爬虫。分布式爬虫可以使用多台计算机或多个线程/进程同时进行爬取,提高抓取速度。
  4. 遵守爬虫道德规范:在编写网络爬虫时,要遵守爬虫道德规范和网站的robots.txt文件规定,避免对目标网站造成过大的访问压力。
  5. 动态网页爬取:许多网站使用JavaScript动态加载数据,这些数据在原始HTML中可能无法直接获取。为了抓取这些数据,可以学习使用Selenium、Pyppeteer等工具模拟浏览器操作,抓取动态加载的数据。
  6. 数据存储:将抓取到的数据存储到数据库中,如SQLite、MySQL、MongoDB等,方便进一步处理和分析。
  7. 数据清洗和分析:对抓取到的数据进行清洗、整理和分析,使用Pandas、NumPy等库进行数据处理,使用Matplotlib、Seaborn等库进行数据可视化。

 到此这篇关于Python爬虫之使用BeautifulSoup和Requests抓取网页数据的文章就介绍到这了,更多相关BeautifulSoup和Requests抓取网页数据内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯