这篇文章主要介绍Postgres中UPDATE更新语句怎么用,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
PG中UPDATE源码分析
本文主要描述SQL中UPDATE语句的源码分析,代码为PG13.3版本。
整体流程分析
以update dtea set id = 1;
这条最简单的Update语句进行源码分析(dtea不是分区表,不考虑并行等,没有建立任何索引),帮助我们理解update的大致流程。
SQL流程如下:
parser(语法解析,生成语法解析树UpdateStmt,检查是否有语法层面的错误)
analyze(语义分析, UpdateStmt转为查询树Query, 会查系统表检查有无语义方面的错误)
rewrite(规则重写, 根据规则rules重写查询树Query, 根据事先存储在系统表中的规则进行重写,没有的话不进行重写,另外加一句,视图的实现是根据规则系统实现的,也是在这里需要进行处理)
optimizer(优化器:逻辑优化、物理优化、生成执行计划, 由Query生成对应的执行计划PlannedStmt, 基于代价的优化器,由最佳路径Path生成最佳执行计划Plan)
executor(执行器,会有各种算子,依据执行计划进行处理,火山模型,一次一元组)
storage(存储引擎)。中间还有事务处理。事务处理部分的代码这里不再进行分析,免得将问题复杂化。存储引擎那部分也不进行分析,重点关注解析、优化、执行这三部分。
对应的代码:
exec_simple_query(const char *query_string)// ------- 解析器部分----------------> pg_parse_query(query_string); //生成语法解析树--> pg_analyze_and_rewrite(parsetree, query_string,NULL, 0, NULL); // 生成查询树Query --> parse_analyze(parsetree, query_string, paramTypes, numParams,queryEnv); // 语义分析 --> pg_rewrite_query(query); // 规则重写// --------优化器------------> pg_plan_queries()//-------- 执行器------------> PortalStart(portal, NULL, 0, InvalidSnapshot);--> PortalRun(portal,FETCH_ALL,true,true,receiver,receiver,&qc); // 执行器执行--> PortalDrop(portal, false);
解析部分——生成语法解析树UpdateStmt
关键数据结构:UpdateStmt
、RangeVar
、ResTarget
:
typedef struct UpdateStmt{ NodeTag type; RangeVar *relation; List *targetList; // 对应语句中的set id = 0;信息在这里 Node *whereClause; List *fromClause; List *returningList; WithClause *withClause; } UpdateStmt;// dtea 表typedef struct RangeVar{ NodeTag type; char *catalogname; char *schemaname; char *relname; bool inh; char relpersistence; Alias *alias; int location; } RangeVar;// set id = 0; 经transformTargetList() -> transformTargetEntry,会转为TargetEntrytypedef struct ResTarget{ NodeTag type; char *name; // id column List *indirection; Node *val; // = 1表达式节点存在这里 int location; } ResTarget;
用户输入的update语句update dtea set id = 1
由字符串会转为可由数据库理解的内部数据结构语法解析树UpdateStmt
。执行逻辑在pg_parse_query(query_string);
中,需要理解flex与bison。
gram.y中Update语法的定义:
//结合这条语句分析 update dtea set id = 0;UpdateStmt: opt_with_clause UPDATE relation_expr_opt_alias SET set_clause_list from_clause where_or_current_clause returning_clause { UpdateStmt *n = makeNode(UpdateStmt); n->relation = $3; n->targetList = $5; n->fromClause = $6; n->whereClause = $7; n->returningList = $8; n->withClause = $1; $$ = (Node *)n; } ;set_clause_list: set_clause { $$ = $1; } | set_clause_list ',' set_clause { $$ = list_concat($1,$3); } ;// 对应的是 set id = 0set_clause: // id = 0 set_target '=' a_expr { $1->val = (Node *) $3; $$ = list_make1($1); } | '(' set_target_list ')' '=' a_expr { int ncolumns = list_length($2); int i = 1; ListCell *col_cell; foreach(col_cell, $2) { ResTarget *res_col = (ResTarget *) lfirst(col_cell); MultiAssignRef *r = makeNode(MultiAssignRef); r->source = (Node *) $5; r->colno = i; r->ncolumns = ncolumns; res_col->val = (Node *) r; i++; } $$ = $2; } ;set_target: ColId opt_indirection { $$ = makeNode(ResTarget); $$->name = $1; $$->indirection = check_indirection($2, yyscanner); $$->val = NULL; $$->location = @1; } ;set_target_list: set_target { $$ = list_make1($1); } | set_target_list ',' set_target { $$ = lappend($1,$3); } ;
解析部分——生成查询树Query
生成了UpdateStmt
后, 会经由parse_analyze
语义分析,生成查询树Query
,以供后续优化器生成执行计划。主要代码在src/backent/parser/analyze.c
中
analyze.c : transform the raw parse tree into a query tree
parse_analyze()--> transformTopLevelStmt(pstate, parseTree); --> transformOptionalSelectInto(pstate, parseTree->stmt); --> transformStmt(pstate, parseTree); // transforms an update statement --> transformUpdateStmt(pstate, (UpdateStmt *) parseTree); // 实际由UpdateStmt转为Query的处理函数
具体的我们看一下transformUpdateStmt
函数实现:
static Query *transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt) { Query *qry = makeNode(Query); ParseNamespaceItem *nsitem; Node *qual; qry->commandType = CMD_UPDATE; pstate->p_is_insert = false; if (stmt->withClause) { qry->hasRecursive = stmt->withClause->recursive; qry->cteList = transformWithClause(pstate, stmt->withClause); qry->hasModifyingCTE = pstate->p_hasModifyingCTE; } qry->resultRelation = setTargetTable(pstate, stmt->relation, stmt->relation->inh, true, ACL_UPDATE); nsitem = pstate->p_target_nsitem; nsitem->p_lateral_only = true; nsitem->p_lateral_ok = false; transformFromClause(pstate, stmt->fromClause); nsitem->p_lateral_only = false; nsitem->p_lateral_ok = true; qual = transformWhereClause(pstate, stmt->whereClause,EXPR_KIND_WHERE, "WHERE"); qry->returningList = transformReturningList(pstate, stmt->returningList); qry->targetList = transformUpdateTargetList(pstate, stmt->targetList); // 处理SQL语句中的 set id =1 qry->rtable = pstate->p_rtable; qry->jointree = makeFromExpr(pstate->p_joinlist, qual); qry->hasTargetSRFs = pstate->p_hasTargetSRFs; qry->hasSubLinks = pstate->p_hasSubLinks; assign_query_collations(pstate, qry); return qry;}
这里面要重点关注一下transformTargetList
,会将抽象语法树中的ResTarget
转为查询器的TargetEntry
。
typedef struct TargetEntry{ Expr xpr; Expr *expr; AttrNumber resno; char *resname; Index ressortgroupref; Oid resorigtbl; AttrNumber resorigcol; bool resjunk; } TargetEntry;
对于其内部处理可参考源码
src/backend/parser
中的相关处理,这里不再细述。需要重点阅读一下README,PG源码中所有的README都是非常好的资料,一定要认真读。
优化器——生成执行计划
这块的内容很多,主要的逻辑是先进行逻辑优化,比如子查询、子链接、常量表达式、选择下推等等的处理,因为我们要分析的这条语句十分简单,所以逻辑优化的这部分都没有涉及到。物理优化,涉及到选择率,代价估计,索引扫描还是顺序扫描,选择那种连接方式,应用动态规划呢还是基因算法,选择nestloop-join、merge-join还是hash-join等。因为我们这个表没有建索引,更新单表也不涉及到多表连接,所以物理优化这块涉及的也不多。路径生成,生成最佳路径,再由最佳路径生成执行计划。
在路径生成这块,最基础的是对表的扫描方式,比如顺序扫描、索引扫描,再往上是连接方式,采用那种连接方式,再往上是比如排序、Limit等路径......,由底向上生成路径。我们要分析的语句很简单,没有其他处理,就顺序扫描再更新就可以了。
这里先不考虑并行执行计划。我们先看一下其执行计划结果:
postgres@postgres=# explain update dtea set id = 0; QUERY PLAN -------------------------------------------------------------- Update on dtea (cost=0.00..19.00 rows=900 width=68) -> Seq Scan on dtea (cost=0.00..19.00 rows=900 width=68)(2 rows)
下面我们分析一下其执行计划的生成流程:
// 由查询树Query--> Path --> Plan (PlannedStmt)pg_plan_queries()--> pg_plan_query() --> planner() --> standard_planner(Query *parse, const char *query_string, int cursorOptions,ParamListInfo boundParams) // 由Query---> PlannerInfo --> subquery_planner(glob, parse, NULL,false, tuple_fraction); // 涉及到很多逻辑优化的内容,很多不列出 --> pull_up_sublinks(root); --> pull_up_subqueries(root); // 这里只列出几个重要的逻辑优化内容,其他的不再列出...... // 如果是update/delete分区表继承表则走inheritance_planner(),其他情况走grouping_planner() --> inheritance_planner() // update/delete分区表继承表的情况 --> grouping_planner() --> grouping_planner() // 非分区表、继承表的情况 --> preprocess_targetlist(root); // update虽然只更新一列,但是插入一条新元组的时候,需要知道其他列信息. --> rewriteTargetListUD(parse, target_rte, target_relation); --> expand_targetlist() --> query_planner(root, standard_qp_callback, &qp_extra); // 重要 --> add_base_rels_to_query() --> deconstruct_jointree(root); --> add_other_rels_to_query(root); // 展开分区表到PlannerInfo中的相关字段中 --> expand_inherited_rtentry() --> expand_planner_arrays(root, num_live_parts); --> make_one_rel(root, joinlist); --> set_base_rel_sizes(root); --> set_rel_size(); --> set_append_rel_size(root, rel, rti, rte); // 如果是分区表或者继承走这里,否则走下面 --> set_rel_size(root, childrel, childRTindex, childRTE); // 处理子分区表 --> set_plain_rel_size(root, rel, rte); --> set_plain_rel_size() // 如果不是分区表或者继承 --> set_baserel_size_estimates() --> set_base_rel_pathlists(root); --> set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]); --> set_append_rel_pathlist(root, rel, rti, rte); // 生成各分区表的访问路径 --> make_rel_from_joinlist(root, joinlist);// 动态规划还是基因规划 --> standard_join_search() // 动态规划 --> geqo() // 基因规划与动态规划二选一 --> apply_scanjoin_target_to_paths() --> create_modifytable_path() // 由PlannerInfo---> RelOptInfo --> fetch_upper_rel(root, UPPERREL_FINAL, NULL); // 由RelOptInfo---> Path --> get_cheapest_fractional_path(final_rel, tuple_fraction); // 由 PlannerInfo+Path ---> Plan --> create_plan(root, best_path); // 后续处理,由Plan ---> PlannedStmt
核心数据结构:PlannedStmt、PlannerInfo、RelOptInfo(存储访问路径及其代价)、Path
Path:所有的路径都继承自Path,所以这个比较重要。
typedef struct Path{ NodeTag type; NodeTag pathtype; RelOptInfo *parent; PathTarget *pathtarget; ParamPathInfo *param_info; bool parallel_aware; bool parallel_safe; int parallel_workers; double rows; Cost startup_cost; Cost total_cost; List *pathkeys; } Path;typedef struct ModifyTablePath{ Path path; // 可以看到ModifyTablePath继承自Path CmdType operation; bool canSetTag; Index nominalRelation; Index rootRelation; bool partColsUpdated; List *resultRelations; List *subpaths; List *subroots; List *withCheckOptionLists; List *returningLists; List *rowMarks; OnConflictExpr *onconflict; int epqParam; } ModifyTablePath;
生成update执行路径,最终都是要生成ModifyTablePath,本例中路径生成过程:Path-->ProjectionPath-->ModifyTablePath,也就是先顺序扫描表,再修改表。后面由路径生成执行计划。
ModifyTablePath *create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, bool partColsUpdated, List *resultRelations, List *subpaths, List *subroots, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, int epqParam){ ModifyTablePath *pathnode = makeNode(ModifyTablePath); double total_size; ListCell *lc; Assert(list_length(resultRelations) == list_length(subpaths)); Assert(list_length(resultRelations) == list_length(subroots)); Assert(withCheckOptionLists == NIL || list_length(resultRelations) == list_length(withCheckOptionLists)); Assert(returningLists == NIL || list_length(resultRelations) == list_length(returningLists)); pathnode->path.pathtype = T_ModifyTable; pathnode->path.parent = rel; pathnode->path.pathtarget = rel->reltarget; pathnode->path.param_info = NULL; pathnode->path.parallel_aware = false; pathnode->path.parallel_safe = false; pathnode->path.parallel_workers = 0; pathnode->path.pathkeys = NIL; pathnode->path.startup_cost = 0; pathnode->path.total_cost = 0; pathnode->path.rows = 0; total_size = 0; foreach(lc, subpaths) { Path *subpath = (Path *) lfirst(lc); if (lc == list_head(subpaths)) pathnode->path.startup_cost = subpath->startup_cost; pathnode->path.total_cost += subpath->total_cost; pathnode->path.rows += subpath->rows; total_size += subpath->pathtarget->width * subpath->rows; } if (pathnode->path.rows > 0) total_size /= pathnode->path.rows; pathnode->path.pathtarget->width = rint(total_size); pathnode->operation = operation; pathnode->canSetTag = canSetTag; pathnode->nominalRelation = nominalRelation; pathnode->rootRelation = rootRelation; pathnode->partColsUpdated = partColsUpdated; pathnode->resultRelations = resultRelations; pathnode->subpaths = subpaths; pathnode->subroots = subroots; pathnode->withCheckOptionLists = withCheckOptionLists; pathnode->returningLists = returningLists; pathnode->rowMarks = rowMarks; pathnode->onconflict = onconflict; pathnode->epqParam = epqParam; return pathnode;}
现在我们生成了最优的update路径,需要由路径生成执行计划:
Plan *create_plan(PlannerInfo *root, Path *best_path){ Plan *plan; Assert(root->plan_params == NIL); root->curOuterRels = NULL; root->curOuterParams = NIL; plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST); // 实际实现是在这里 if (!IsA(plan, ModifyTable)) apply_tlist_labeling(plan->targetlist, root->processed_tlist); SS_attach_initplans(root, plan); if (root->curOuterParams != NIL) elog(ERROR, "failed to assign all NestLoopParams to plan nodes"); root->plan_params = NIL; return plan;}// 由最佳路径生成最佳执行计划static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path){ ModifyTable *plan; List *subplans = NIL; ListCell *subpaths, *subroots; forboth(subpaths, best_path->subpaths, subroots, best_path->subroots) { Path *subpath = (Path *) lfirst(subpaths); PlannerInfo *subroot = (PlannerInfo *) lfirst(subroots); Plan *subplan; subplan = create_plan_recurse(subroot, subpath, CP_EXACT_TLIST); apply_tlist_labeling(subplan->targetlist, subroot->processed_tlist); subplans = lappend(subplans, subplan); } plan = make_modifytable(root,best_path->operation,best_path->canSetTag, best_path->nominalRelation,best_path->rootRelation, best_path->partColsUpdated,best_path->resultRelations, subplans,best_path->subroots,best_path->withCheckOptionLists, best_path->returningLists,best_path->rowMarks, best_path->onconflict,best_path->epqParam); copy_generic_path_info(&plan->plan, &best_path->path); return plan;}
最终的执行计划是ModifyTable:
typedef struct ModifyTable{ Plan plan; CmdType operation; bool canSetTag; Index nominalRelation; Index rootRelation; bool partColsUpdated; List *resultRelations; int resultRelIndex; int rootResultRelIndex; List *plans; List *withCheckOptionLists; List *returningLists; List *fdwPrivLists; Bitmapset *fdwDirectModifyPlans; List *rowMarks; int epqParam; OnConflictAction onConflictAction; List *arbiterIndexes; List *onConflictSet; Node *onConflictWhere; Index exclRelRTI; List *exclRelTlist; } ModifyTable;
执行器
根据上面的执行计划,去执行。主要是各种算子的实现,其中要理解执行器的运行原理,主要是火山模型,一次一元组。我们看一下其调用过程。
CreatePortal("", true, true);PortalDefineQuery(portal,NULL,query_string,commandTag,plantree_list,NULL);PortalStart(portal, NULL, 0, InvalidSnapshot);PortalRun(portal,FETCH_ALL,true,true,receiver,receiver,&qc);--> PortalRunMulti() --> ProcessQuery() --> ExecutorStart(queryDesc, 0); --> standard_ExecutorStart() --> estate = CreateExecutorState(); // 创建EState --> estate->es_output_cid = GetCurrentCommandId(true); // 获得cid,后面更新的时候要用 --> InitPlan(queryDesc, eflags); --> ExecInitNode(plan, estate, eflags); --> ExecInitModifyTable() // 初始化ModifyTableState --> ExecutorRun(queryDesc, ForwardScanDirection, 0L, true); --> standard_ExecutorRun() --> ExecutePlan() --> ExecProcNode(planstate); // 一次一元组 火山模型 --> node->ExecProcNode(node); --> ExecProcNodeFirst(PlanState *node) --> node->ExecProcNode(node); --> ExecModifyTable(PlanState *pstate) --> ExecUpdate() --> table_tuple_update(Relation rel, ......) --> rel->rd_tableam->tuple_update() --> heapam_tuple_update(Relation relation, ......) --> heap_update(relation, otid, tuple, cid, ......) --> ExecutorFinish(queryDesc); --> ExecutorEnd(queryDesc);PortalDrop(portal, false);
关键数据结构:
// ModifyTableState informationtypedef struct ModifyTableState{ PlanState ps; CmdType operation; bool canSetTag; bool mt_done; PlanState **mt_plans; int mt_nplans; int mt_whichplan; TupleTableSlot **mt_scans; ResultRelInfo *resultRelInfo; ResultRelInfo *rootResultRelInfo; List **mt_arowmarks; EPQState mt_epqstate; bool fireBSTriggers; TupleTableSlot *mt_root_tuple_slot; struct PartitionTupleRouting *mt_partition_tuple_routing; struct TransitionCaptureState *mt_transition_capture; struct TransitionCaptureState *mt_oc_transition_capture; TupleConversionMap **mt_per_subplan_tupconv_maps;} ModifyTableState;
核心执行算子实现:
static TupleTableSlot *ExecModifyTable(PlanState *pstate){ ModifyTableState *node = castNode(ModifyTableState, pstate); PartitionTupleRouting *proute = node->mt_partition_tuple_routing; EState *estate = node->ps.state; CmdType operation = node->operation; ResultRelInfo *saved_resultRelInfo; ResultRelInfo *resultRelInfo; PlanState *subplanstate; JunkFilter *junkfilter; TupleTableSlot *slot; TupleTableSlot *planSlot; ItemPointer tupleid; ItemPointerData tuple_ctid; HeapTupleData oldtupdata; HeapTuple oldtuple; CHECK_FOR_INTERRUPTS(); if (estate->es_epq_active != NULL) elog(ERROR, "ModifyTable should not be called during EvalPlanQual"); if (node->mt_done) return NULL; if (node->fireBSTriggers) { fireBSTriggers(node); node->fireBSTriggers = false; } resultRelInfo = node->resultRelInfo + node->mt_whichplan; subplanstate = node->mt_plans[node->mt_whichplan]; junkfilter = resultRelInfo->ri_junkFilter; saved_resultRelInfo = estate->es_result_relation_info; estate->es_result_relation_info = resultRelInfo; for (;;) { ResetPerTupleExprContext(estate); if (pstate->ps_ExprContext) ResetExprContext(pstate->ps_ExprContext); planSlot = ExecProcNode(subplanstate); if (TupIsNull(planSlot)) { node->mt_whichplan++; // 分区表的update,每个分区分布对应一个subplan,当执行完一个分区再执行下一个分区 if (node->mt_whichplan < node->mt_nplans) { resultRelInfo++; subplanstate = node->mt_plans[node->mt_whichplan]; junkfilter = resultRelInfo->ri_junkFilter; estate->es_result_relation_info = resultRelInfo; EvalPlanQualSetPlan(&node->mt_epqstate, subplanstate->plan, node->mt_arowmarks[node->mt_whichplan]); if (node->mt_transition_capture != NULL) { node->mt_transition_capture->tcs_map = tupconv_map_for_subplan(node, node->mt_whichplan); } if (node->mt_oc_transition_capture != NULL) { node->mt_oc_transition_capture->tcs_map = tupconv_map_for_subplan(node, node->mt_whichplan); } continue; } else break; } if (node->mt_scans[node->mt_whichplan]->tts_ops != planSlot->tts_ops) { ExecCopySlot(node->mt_scans[node->mt_whichplan], planSlot); planSlot = node->mt_scans[node->mt_whichplan]; } if (resultRelInfo->ri_usesFdwDirectModify) { Assert(resultRelInfo->ri_projectReturning); slot = ExecProcessReturning(resultRelInfo->ri_projectReturning, RelationGetRelid(resultRelInfo->ri_RelationDesc), NULL, planSlot); estate->es_result_relation_info = saved_resultRelInfo; return slot; } EvalPlanQualSetSlot(&node->mt_epqstate, planSlot); slot = planSlot; tupleid = NULL; oldtuple = NULL; if (junkfilter != NULL) { if (operation == CMD_UPDATE || operation == CMD_DELETE) { char relkind; Datum datum; bool isNull; relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind; if (relkind == RELKIND_RELATION || relkind == RELKIND_MATVIEW) { datum = ExecGetJunkAttribute(slot,junkfilter->jf_junkAttNo,&isNull); if (isNull) elog(ERROR, "ctid is NULL"); tupleid = (ItemPointer) DatumGetPointer(datum); tuple_ctid = *tupleid; tupleid = &tuple_ctid; } else if (AttributeNumberIsValid(junkfilter->jf_junkAttNo)) { datum = ExecGetJunkAttribute(slot,junkfilter->jf_junkAttNo,&isNull); if (isNull) elog(ERROR, "wholerow is NULL"); oldtupdata.t_data = DatumGetHeapTupleHeader(datum); oldtupdata.t_len = HeapTupleHeaderGetDatumLength(oldtupdata.t_data); ItemPointerSetInvalid(&(oldtupdata.t_self)); oldtupdata.t_tableOid = (relkind == RELKIND_VIEW) ? InvalidOid : RelationGetRelid(resultRelInfo->ri_RelationDesc); oldtuple = &oldtupdata; } else Assert(relkind == RELKIND_FOREIGN_TABLE); } if (operation != CMD_DELETE) slot = ExecFilterJunk(junkfilter, slot); } switch (operation) { case CMD_INSERT: if (proute) slot = ExecPrepareTupleRouting(node, estate, proute, resultRelInfo, slot); slot = ExecInsert(node, slot, planSlot, NULL, estate->es_result_relation_info, estate, node->canSetTag); if (proute) estate->es_result_relation_info = resultRelInfo; break; case CMD_UPDATE: slot = ExecUpdate(node, tupleid, oldtuple, slot, planSlot, &node->mt_epqstate, estate, node->canSetTag); break; case CMD_DELETE: slot = ExecDelete(node, tupleid, oldtuple, planSlot, &node->mt_epqstate, estate, true, node->canSetTag, false , NULL, NULL); break; default: elog(ERROR, "unknown operation"); break; } if (slot) { estate->es_result_relation_info = saved_resultRelInfo; return slot; } } estate->es_result_relation_info = saved_resultRelInfo; fireASTriggers(node); node->mt_done = true; return NULL;}
我们看一下具体执行Update的实现
```c++static TupleTableSlot *ExecUpdate(ModifyTableState *mtstate, ItemPointer tupleid, HeapTuple oldtuple, TupleTableSlot *slot, TupleTableSlot *planSlot, EPQState *epqstate, EState *estate, bool canSetTag){ ResultRelInfo *resultRelInfo; Relation resultRelationDesc; TM_Result result; TM_FailureData tmfd; List *recheckIndexes = NIL; TupleConversionMap *saved_tcs_map = NULL; if (IsBootstrapProcessingMode()) elog(ERROR, "cannot UPDATE during bootstrap"); ExecMaterializeSlot(slot); resultRelInfo = estate->es_result_relation_info; resultRelationDesc = resultRelInfo->ri_RelationDesc; if (resultRelInfo->ri_TrigDesc && resultRelInfo->ri_TrigDesc->trig_update_before_row) { if (!ExecBRUpdateTriggers(estate, epqstate, resultRelInfo, tupleid, oldtuple, slot)) return NULL; } if (resultRelInfo->ri_TrigDesc && resultRelInfo->ri_TrigDesc->trig_update_instead_row) { if (!ExecIRUpdateTriggers(estate, resultRelInfo, oldtuple, slot)) return NULL; } else if (resultRelInfo->ri_FdwRoutine) { if (resultRelationDesc->rd_att->constr && resultRelationDesc->rd_att->constr->has_generated_stored) ExecComputeStoredGenerated(estate, slot, CMD_UPDATE); slot = resultRelInfo->ri_FdwRoutine->ExecForeignUpdate(estate, resultRelInfo, slot, planSlot); if (slot == NULL) return NULL; slot->tts_tableOid = RelationGetRelid(resultRelationDesc); } else { LockTupleMode lockmode; bool partition_constraint_failed; bool update_indexes; slot->tts_tableOid = RelationGetRelid(resultRelationDesc); if (resultRelationDesc->rd_att->constr && resultRelationDesc->rd_att->constr->has_generated_stored) ExecComputeStoredGenerated(estate, slot, CMD_UPDATE); lreplace:; ExecMaterializeSlot(slot); partition_constraint_failed = resultRelInfo->ri_PartitionCheck && !ExecPartitionCheck(resultRelInfo, slot, estate, false); if (!partition_constraint_failed && resultRelInfo->ri_WithCheckOptions != NIL) { ExecWithCheckOptions(WCO_RLS_UPDATE_CHECK, resultRelInfo, slot, estate); } if (partition_constraint_failed) { bool tuple_deleted; TupleTableSlot *ret_slot; TupleTableSlot *orig_slot = slot; TupleTableSlot *epqslot = NULL; PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing; int map_index; TupleConversionMap *tupconv_map; if (((ModifyTable *) mtstate->ps.plan)->onConflictAction == ONCONFLICT_UPDATE) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("invalid ON UPDATE specification"), errdetail("The result tuple would appear in a different partition than the original tuple."))); if (proute == NULL) ExecPartitionCheckEmitError(resultRelInfo, slot, estate); ExecDelete(mtstate, tupleid, oldtuple, planSlot, epqstate, estate, false, false , true , &tuple_deleted, &epqslot); if (!tuple_deleted) { if (TupIsNull(epqslot)) return NULL; else { slot = ExecFilterJunk(resultRelInfo->ri_junkFilter, epqslot); goto lreplace; } } if (mtstate->mt_transition_capture) saved_tcs_map = mtstate->mt_transition_capture->tcs_map; map_index = resultRelInfo - mtstate->resultRelInfo; Assert(map_index >= 0 && map_index < mtstate->mt_nplans); tupconv_map = tupconv_map_for_subplan(mtstate, map_index); if (tupconv_map != NULL) slot = execute_attr_map_slot(tupconv_map->attrMap, slot, mtstate->mt_root_tuple_slot); Assert(mtstate->rootResultRelInfo != NULL); slot = ExecPrepareTupleRouting(mtstate, estate, proute, mtstate->rootResultRelInfo, slot); ret_slot = ExecInsert(mtstate, slot, planSlot, orig_slot, resultRelInfo, estate, canSetTag); estate->es_result_relation_info = resultRelInfo; if (mtstate->mt_transition_capture) { mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL; mtstate->mt_transition_capture->tcs_map = saved_tcs_map; } return ret_slot; } if (resultRelationDesc->rd_att->constr) ExecConstraints(resultRelInfo, slot, estate); result = table_tuple_update(resultRelationDesc, tupleid, slot, estate->es_output_cid, estate->es_snapshot, estate->es_crosscheck_snapshot, true ,&tmfd, &lockmode, &update_indexes); switch (result) { case TM_SelfModified: if (tmfd.cmax != estate->es_output_cid) ereport(ERROR,(errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION), errmsg("tuple to be updated was already modified by an operation triggered by the current command"), errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows."))); return NULL; case TM_Ok: break; case TM_Updated: { TupleTableSlot *inputslot; TupleTableSlot *epqslot; if (IsolationUsesXactSnapshot()) ereport(ERROR,(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),errmsg("could not serialize access due to concurrent update"))); inputslot = EvalPlanQualSlot(epqstate, resultRelationDesc,resultRelInfo->ri_RangeTableIndex); result = table_tuple_lock(resultRelationDesc, tupleid, estate->es_snapshot,inputslot, estate->es_output_cid, lockmode, LockWaitBlock, TUPLE_LOCK_FLAG_FIND_LAST_VERSION,&tmfd); switch (result) { case TM_Ok: Assert(tmfd.traversed); epqslot = EvalPlanQual(epqstate, resultRelationDesc, resultRelInfo->ri_RangeTableIndex, inputslot); if (TupIsNull(epqslot)) return NULL; slot = ExecFilterJunk(resultRelInfo->ri_junkFilter, epqslot); goto lreplace; case TM_Deleted: return NULL; case TM_SelfModified: if (tmfd.cmax != estate->es_output_cid) ereport(ERROR,(errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION), errmsg("tuple to be updated was already modified by an operation triggered by the current command"),errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows."))); return NULL; default: elog(ERROR, "unexpected table_tuple_lock status: %u", result); return NULL; } } break; case TM_Deleted: if (IsolationUsesXactSnapshot()) ereport(ERROR,(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),errmsg("could not serialize access due to concurrent delete"))); return NULL; default: elog(ERROR, "unrecognized table_tuple_update status: %u", result); return NULL; } if (resultRelInfo->ri_NumIndices > 0 && update_indexes) recheckIndexes = ExecInsertIndexTuples(slot, estate, false, NULL, NIL); } if (canSetTag) (estate->es_processed)++; ExecARUpdateTriggers(estate, resultRelInfo, tupleid, oldtuple, slot,recheckIndexes,mtstate->operation == CMD_INSERT ?mtstate->mt_oc_transition_capture : mtstate->mt_transition_capture); list_free(recheckIndexes); if (resultRelInfo->ri_WithCheckOptions != NIL) ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate); if (resultRelInfo->ri_projectReturning) return ExecProcessReturning(resultRelInfo->ri_projectReturning,RelationGetRelid(resultRelationDesc),slot, planSlot); return NULL;}
再往下就是涉及到存储引擎的部分了,我们重点看一下其对外的接口输入参数。重点是这4个参数:
relation - table to be modified (caller must hold suitable lock) (要更新的那个表)
otid - TID of old tuple to be replaced (要更新的元组ID,对应的是老的元组,更新后相当于是插入一条新元组,老元组的tid值要更新为新的tid值)
slot - newly constructed tuple data to store (新元组的值)
cid - update command ID (used for visibility test, and stored into cmax/cmin if successful) (cid值,事务相关) 执行器层面的更新算子是建立在存储引擎提供的底层table_tuple_update接口之上的。是我们编写ExecUpdate以及ExecModifyTable的基础。
static inline TM_Resulttable_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot, CommandId cid, Snapshot snapshot, Snapshot crosscheck, bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode, bool *update_indexes){ return rel->rd_tableam->tuple_update(rel, otid, slot, cid, snapshot, crosscheck, wait, tmfd, lockmode, update_indexes);}
事务
这一块主要是要理解PG中update语句并不是原地更新元组,而是插入一条新元组。因为PG实现MVCC与Mysql,Oracle的实现方式有所不同,并不是通过undo日志实现的,相当于把undo日志记录到了原有的表中,并不是单独存放在一个地方。具体的不再细述,内容太多了,以后再分析事务部分。
好了,内容很多,分析源码的时候,涉及到的知识点以及逻辑是非常多的,我们最好每次分析只抓一个主干,不然每个都分析,最后就会比较乱。就先分析到这里吧。
以上是“Postgres中UPDATE更新语句怎么用”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网行业资讯频道!