文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

pyecharts绘制各种数据可视化图表案例附效果+代码

2024-04-02 19:55

关注

1、pyecharts绘制饼图(显示百分比)

# 导入模块
from pyecharts import options as opts
from pyecharts.charts import Pie
#准备数据
label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子','迪奥','阿玛尼','香奈儿']
values = [300,300,300,300,44,300,300,300]
# 自定义函数
def pie_base():
    c = (
        Pie()
        .add("",[list(z) for z in zip(label,values)])
        .set_global_opts(title_opts = opts.TitleOpts(title="口红品牌分析"))
        .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%"))   # 值得一提的是,{d}%为百分比
    )
    return c
# 调用自定义函数生成render.html
pie_base().render()

2、pyecharts绘制柱状图

#导入模块
from pyecharts.globals import ThemeType
from pyecharts import options as opts
from pyecharts.charts import Bar
#准备数据
l1=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']
l2=[100,200,300,400,500,400,300]
bar = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(l1)
    .add_yaxis("柱状图标签", l2)
    .set_global_opts(title_opts=opts.TitleOpts(title="柱状图-基本示例", subtitle="副标题"))
)
# 生成render.html
bar.render()

3、pyecharts绘制折线图

#导入模块
import pyecharts.options as opts
from pyecharts.charts import Line
#准备数据
x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']
y1=[100,200,300,400,100,400,300]
y2=[200,300,200,100,200,300,400]
line=(
    Line()
    .add_xaxis(xaxis_data=x)
    .add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True)
    .add_yaxis(series_name="y2线",y_axis=y2)
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-双折线图"))
)
#生成render.html
line.render()

4、pyecharts绘制柱形折线组合图

from pyecharts import options as opts
from pyecharts.charts import Bar, Grid, Line
#x轴的值为列表,包含每个月份
x_data = ["{}月".format(i) for i in range(1, 13)]
bar = (
    Bar()
    .add_xaxis(x_data)
#第一个y轴的值、标签、颜色
    .add_yaxis(
        "降雨量",
        [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 68.6, 22.0, 6.6, 4.3],
        yaxis_index=0,
        color="#5793f3",
    )

# #第二个y轴的值、标签、颜色
#     .add_yaxis(
#         "蒸发量",
#         [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],
#         yaxis_index=1,
#         color="#5793f3",
#     )

#右纵坐标
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="降雨量",
            type_="value",
            min_=0,
            max_=250,
            position="right",
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color="#d14a61")
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
        )
    )
#左纵坐标
    .extend_axis(
        yaxis=opts.AxisOpts(
            type_="value",
            name="温度",
            min_=0,
            max_=25,
            position="left",
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color="#d14a61")
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            splitline_opts=opts.SplitLineOpts(
                is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
            ),
        )
    )
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(
            name="降雨量",
            min_=0,
            max_=250,
            position="right",
            offset=0,
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color="#5793f3")
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
        ),
        title_opts=opts.TitleOpts(title="Grid-多 Y 轴示例"),
        tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
    )
)
line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis(
        "平均温度",
        [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2],
        yaxis_index=2,
        color="#675bba",
        label_opts=opts.LabelOpts(is_show=False),
    )
)
bar.overlap(line)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render()

5、pyecharts绘制散点图

# 导入模块
from pyecharts import  options as opts
from pyecharts.charts import Scatter
 
# 设置销售数据
week = ["周一","周二","周三","周四","周五","周六","周日"]
c =Scatter()     # 散点图绘制
c.add_xaxis(week)
c.add_yaxis("商家A",[80,65,46,37,57,68,90])
c.set_global_opts(title_opts=opts.TitleOpts(title="一周的销售额(万元)"))    # 设置图表标题
c.render()

6、pyecharts绘制玫瑰图

from pyecharts import options as opts
from pyecharts.charts import Pie

label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子']
values = [100,200,250,350,400]
c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(label,values)],
        radius=["30%", "75%"],
        center=["50%", "50%"],
        rosetype="radius",
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="标题"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%"))   # 值得一提的是,{d}%为百分比
    .render("玫瑰图.html")
)

7、pyecharts绘制词云图

# 导入WordCloud及配置模块
from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
 
# 添加词频数据
words = [
    ("Sam S Club", 10000),
    ("Macys", 6181),
    ("Amy Schumer", 4386),
    ("Jurassic World", 4055),
    ("Charter Communications", 2467),
    ("Chick Fil A", 2244),
    ("Planet Fitness", 1868),
    ("Pitch Perfect", 1484),
    ("Express", 1112),
    ("Home", 865),
    ("Johnny Depp", 847),
    ("Lena Dunham", 582),
    ("Lewis Hamilton", 555),
    ("KXAN", 550),
    ("Mary Ellen Mark", 462),
    ("Farrah Abraham", 366),
    ("Rita Ora", 360),
    ("Serena Williams", 282),
    ("NCAA baseball tournament", 273),
    ("Point Break", 265),
]
 
# WordCloud模块,链式调用配置,最终生成html文件
c = (
    WordCloud()
    .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
    .set_global_opts(title_opts=opts.TitleOpts(title="词云图"))
    .render("wordcloud_diamond.html")
)

8、pyecharts绘制雷达图

from pyecharts import options as opts
from pyecharts.charts import Radar
v1 = [[8.5,50000,15000,8000,13000,5000]]
v2 = [[8.1,42000,13000,7000,15000,7000]]
def radar_base() ->Radar:
    c = (
        Radar()
        .add_schema(
            schema=[
                opts.RadarIndicatorItem(name='KDA',max_=10),
                opts.RadarIndicatorItem(name='输出', max_=60000),
                opts.RadarIndicatorItem(name='经济', max_=20000),
                opts.RadarIndicatorItem(name='生存', max_=10000),
                opts.RadarIndicatorItem(name='推进', max_=20000),
                opts.RadarIndicatorItem(name='刷野', max_=10000),
            ]
        )
        .add(
            '射手',v1,
            color='blue',
            #通过颜色属性 将其填充
            areastyle_opts=opts.AreaStyleOpts(
                opacity=0.5,
                color='blue'
            ),
        )
        .add(
            '法师',v2,
            color='red',
            areastyle_opts=opts.AreaStyleOpts(
                opacity=0.5,
                color='red'
            ),
        )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(title_opts=opts.TitleOpts(title='英雄成长属性对比'))
    )
    return c
radar_base().render("雷达图.html")

9、pyecharts绘制散点图

from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker
c = (
    Scatter()
    .add_xaxis(Faker.choose())
    .add_yaxis(
        "商家A",
        [list(z) for z in zip(Faker.values(), Faker.choose())],
        label_opts=opts.LabelOpts(
            formatter=JsCode(
                "function(params){return params.value[1] +' : '+ params.value[2];}"
            )
        ),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Scatter散点图-多维度数据"),
        tooltip_opts=opts.TooltipOpts(
            formatter=JsCode(
                "function (params) {return params.name + ' : ' + params.value[2];}"
            )
        ),
        visualmap_opts=opts.VisualMapOpts(
            type_="color", max_=150, min_=20, dimension=1
        ),
    )
    .render("散点图.html")
)

10、pyecharts绘制嵌套饼图

import pyecharts.options as opts
from pyecharts.charts import Pie
from pyecharts.globals import ThemeType
list1  = [300,55,400,110]
attr1 = ["学习", "运动","休息", "娱乐"]
list2  = [40,160,45,35,80,400,35,60]
attr2 = ["阅读", "上课", "运动", "讨论", "编程", "睡觉","听音乐", "玩手机"]

inner_data_pair = [list(z) for z in zip(attr1, list1)]
outer_data_pair = [list(z) for z in zip(attr2, list2)]
(
    Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add(
        series_name="时长占比",
        data_pair=inner_data_pair,
        radius=[0, "30%"],
        label_opts=opts.LabelOpts(position="inner"),
    )
    .add(
        series_name="时长占比",
        radius=["40%", "55%"],
        data_pair=outer_data_pair,
        label_opts=opts.LabelOpts(
            position="outside",
            formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c}  {per|{d}%}  ",
            background_color="#eee",
            border_color="#aaa",
            border_width=1,
            border_radius=4,
            rich={
                "a": {"color": "#999", "lineHeight": 22, "align": "center"},
                "abg": {
                    "backgroundColor": "#e3e3e3",
                    "width": "100%",
                    "align": "right",
                    "height": 22,
                    "borderRadius": [4, 4, 0, 0],
                },
                "hr": {
                    "borderColor": "#aaa",
                    "width": "100%",
                    "borderWidth": 0.5,
                    "height": 0,
                },
                "b": {"fontSize": 16, "lineHeight": 33},
                "per": {
                    "color": "#eee",
                    "backgroundColor": "#334455",
                    "padding": [2, 4],
                    "borderRadius": 2,
                },
            },
        ),
    )
    .set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", orient="vertical"))
    .set_series_opts(
        tooltip_opts=opts.TooltipOpts(
            trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"
        )
    )
    .render("嵌套饼图.html")
)

11、pyecharts绘制中国地图

#导入模块
from pyecharts import options as opts
from pyecharts.charts import Map
import random
# 设置商家A所存在的相关省份,并设置初始数量为0
ultraman = [
['四川', 0],
['台湾', 0],
['新疆', 0],
['江西', 0],
['河南', 0],
['辽宁', 0],
['青海', 0],
['福建', 0],
['西藏', 0]
]

# 设置商家B存在的相关省份,并设置初始数量为0
monster = [
['广东', 0],
['北京', 0],
['上海', 0],
['台湾', 0],
['湖南', 0],
['浙江', 0],
['甘肃', 0],
['黑龙江', 0],
['江苏', 0]
]
def data_filling(array):
    ''' 
     作用:给数组数据填充随机数
    '''
    for i in array:
        # 随机生成1到1000的随机数
        i[1] = random.randint(1,1000)
data_filling(ultraman)
data_filling(monster)
def create_china_map():
    (
        Map()
        .add(
            series_name="商家A",
            data_pair=ultraman,
            maptype="china",
            # 是否默认选中,默认为True
            is_selected=True,
            # 是否启用鼠标滚轮缩放和拖动平移,默认为True
            is_roam=True,
            # 是否显示图形标记,默认为True
            is_map_symbol_show=False,
            # 图元样式配置
            itemstyle_opts={
                # 常规显示
                "normal": {"areaColor": "white", "borderColor": "red"},
                # 强调颜色
                "emphasis": {"areaColor": "pink"}
            }
        )
        .add(
            series_name="商家B",
            data_pair=monster,
            maptype="china",
        )
        # 全局配置项
        .set_global_opts(
            # 设置标题
            title_opts=opts.TitleOpts(title="中国地图"),
            # 设置标准显示
            visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False)
        )
        # 系列配置项
        .set_series_opts(
            # 标签名称显示,默认为True
            label_opts=opts.LabelOpts(is_show=True, color="blue")
        )
        # 生成本地html文件
        .render("中国地图.html")
    )
    #调用自定义函数
create_china_map()

12、pyecharts绘制世界地图

from pyecharts import options as opts
from pyecharts.charts import Map
import random
# 设置商家A所存在的相关国家,并设置初始数量为0
ultraman = [
['Russia', 0],
['China', 0],
['United States', 0],
['Australia', 0]
]
# 设置商家B存在的相关国家,并设置初始数量为0
monster = [
['India', 0],
['Canada', 0],
['France', 0],
['Brazil', 0]
]
def data_filling(array):
    for i in array:
        # 随机生成1到1000的随机数
        i[1] = random.randint(1,1000)
        print(i)

data_filling(ultraman)
data_filling(monster)

def create_world_map():
    '''
     作用:生成世界地图
    '''
    (   # 大小设置
        Map()
        .add(
            series_name="商家A",
            data_pair=ultraman,
            maptype="world",
        )
        .add(
            series_name="商家B",
            data_pair=monster,
            maptype="world",
        )
        # 全局配置项
        .set_global_opts(
            # 设置标题
            title_opts=opts.TitleOpts(title="世界地图"),
            # 设置标准显示
            visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False),
        )
        # 系列配置项
        .set_series_opts(
            # 标签名称显示,默认为True
            label_opts=opts.LabelOpts(is_show=False, color="blue")
        )
        # 生成本地html文件
        .render("世界地图.html")
    )

create_world_map()

到此这篇关于pyecharts绘制各种数据可视化图表案例附效果+代码的文章就介绍到这了,更多相关pyecharts可视化图表内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯