本篇内容介绍了“怎么使用pyecharts绘制各种数据可视化图表”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
1、pyecharts绘制饼图(显示百分比)
# 导入模块from pyecharts import options as optsfrom pyecharts.charts import Pie#准备数据label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子','迪奥','阿玛尼','香奈儿']values = [300,300,300,300,44,300,300,300]# 自定义函数def pie_base(): c = ( Pie() .add("",[list(z) for z in zip(label,values)]) .set_global_opts(title_opts = opts.TitleOpts(title="口红品牌分析")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比 ) return c# 调用自定义函数生成render.htmlpie_base().render()
2、pyecharts绘制柱状图
#导入模块from pyecharts.globals import ThemeTypefrom pyecharts import options as optsfrom pyecharts.charts import Bar#准备数据l1=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']l2=[100,200,300,400,500,400,300]bar = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis(l1) .add_yaxis("柱状图标签", l2) .set_global_opts(title_opts=opts.TitleOpts(title="柱状图-基本示例", subtitle="副")))# 生成render.htmlbar.render()
3、pyecharts绘制折线图
#导入模块import pyecharts.options as optsfrom pyecharts.charts import Line#准备数据x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']y1=[100,200,300,400,100,400,300]y2=[200,300,200,100,200,300,400]line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True) .add_yaxis(series_name="y2线",y_axis=y2) .set_global_opts(title_opts=opts.TitleOpts(title="Line-双折线图")))#生成render.htmlline.render()
4、pyecharts绘制柱形折线组合图
from pyecharts import options as optsfrom pyecharts.charts import Bar, Grid, Line#x轴的值为列表,包含每个月份x_data = ["{}月".format(i) for i in range(1, 13)]bar = ( Bar() .add_xaxis(x_data)#第一个y轴的值、标签、颜色 .add_yaxis( "降雨量", [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 68.6, 22.0, 6.6, 4.3], yaxis_index=0, color="#5793f3", )# #第二个y轴的值、标签、颜色# .add_yaxis(# "蒸发量",# [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],# yaxis_index=1,# color="#5793f3",# )#右纵坐标 .extend_axis( yaxis=opts.AxisOpts( name="降雨量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) )#左纵坐标 .extend_axis( yaxis=opts.AxisOpts( type_="value", name="温度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( yaxis_opts=opts.AxisOpts( name="降雨量", min_=0, max_=250, position="right", offset=0, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#5793f3") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), title_opts=opts.TitleOpts(title="Grid-多 Y 轴示例"), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), ))line = ( Line() .add_xaxis(x_data) .add_yaxis( "平均温度", [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2], yaxis_index=2, color="#675bba", label_opts=opts.LabelOpts(is_show=False), ))bar.overlap(line)grid = Grid()grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)grid.render()
5、pyecharts绘制散点图
# 导入模块from pyecharts import options as optsfrom pyecharts.charts import Scatter # 设置销售数据week = ["周一","周二","周三","周四","周五","周六","周日"]c =Scatter() # 散点图绘制c.add_xaxis(week)c.add_yaxis("商家A",[80,65,46,37,57,68,90])c.set_global_opts(title_opts=opts.TitleOpts(title="一周的销售额(万元)")) # 设置图表c.render()
6、pyecharts绘制玫瑰图
from pyecharts import options as optsfrom pyecharts.charts import Pielabel=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子']values = [100,200,250,350,400]c = ( Pie() .add( "", [list(z) for z in zip(label,values)], radius=["30%", "75%"], center=["50%", "50%"], rosetype="radius", label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts(title_opts=opts.TitleOpts(title="")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比 .render("玫瑰图.html"))
7、pyecharts绘制词云图
# 导入WordCloud及配置模块from pyecharts import options as optsfrom pyecharts.charts import WordCloudfrom pyecharts.globals import SymbolType # 添加词频数据words = [ ("Sam S Club", 10000), ("Macys", 6181), ("Amy Schumer", 4386), ("Jurassic World", 4055), ("Charter Communications", 2467), ("Chick Fil A", 2244), ("Planet Fitness", 1868), ("Pitch Perfect", 1484), ("Express", 1112), ("Home", 865), ("Johnny Depp", 847), ("Lena Dunham", 582), ("Lewis Hamilton", 555), ("KXAN", 550), ("Mary Ellen Mark", 462), ("Farrah Abraham", 366), ("Rita Ora", 360), ("Serena Williams", 282), ("NCAA baseball tournament", 273), ("Point Break", 265),] # WordCloud模块,链式调用配置,最终生成html文件c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="词云图")) .render("wordcloud_diamond.html"))
8、pyecharts绘制雷达图
from pyecharts import options as optsfrom pyecharts.charts import Radarv1 = [[8.5,50000,15000,8000,13000,5000]]v2 = [[8.1,42000,13000,7000,15000,7000]]def radar_base() ->Radar: c = ( Radar() .add_schema( schema=[ opts.RadarIndicatorItem(name='KDA',max_=10), opts.RadarIndicatorItem(name='输出', max_=60000), opts.RadarIndicatorItem(name='经济', max_=20000), opts.RadarIndicatorItem(name='生存', max_=10000), opts.RadarIndicatorItem(name='推进', max_=20000), opts.RadarIndicatorItem(name='刷野', max_=10000), ] ) .add( '射手',v1, color='blue', #通过颜色属性 将其填充 areastyle_opts=opts.AreaStyleOpts( opacity=0.5, color='blue' ), ) .add( '法师',v2, color='red', areastyle_opts=opts.AreaStyleOpts( opacity=0.5, color='red' ), ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts(title_opts=opts.TitleOpts(title='英雄成长属性对比')) ) return cradar_base().render("雷达图.html")
9、pyecharts绘制散点图
from pyecharts import options as optsfrom pyecharts.charts import Scatterfrom pyecharts.commons.utils import JsCodefrom pyecharts.faker import Fakerc = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis( "商家A", [list(z) for z in zip(Faker.values(), Faker.choose())], label_opts=opts.LabelOpts( formatter=JsCode( "function(params){return params.value[1] +' : '+ params.value[2];}" ) ), ) .set_global_opts( title_opts=opts.TitleOpts(title="Scatter散点图-多维度数据"), tooltip_opts=opts.TooltipOpts( formatter=JsCode( "function (params) {return params.name + ' : ' + params.value[2];}" ) ), visualmap_opts=opts.VisualMapOpts( type_="color", max_=150, min_=20, dimension=1 ), ) .render("散点图.html"))
10、pyecharts绘制嵌套饼图
import pyecharts.options as optsfrom pyecharts.charts import Piefrom pyecharts.globals import ThemeTypelist1 = [300,55,400,110]attr1 = ["学习", "运动","休息", "娱乐"]list2 = [40,160,45,35,80,400,35,60]attr2 = ["阅读", "上课", "运动", "讨论", "编程", "睡觉","听音乐", "玩手机"]inner_data_pair = [list(z) for z in zip(attr1, list1)]outer_data_pair = [list(z) for z in zip(attr2, list2)]( Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add( series_name="时长占比", data_pair=inner_data_pair, radius=[0, "30%"], label_opts=opts.LabelOpts(position="inner"), ) .add( series_name="时长占比", radius=["40%", "55%"], data_pair=outer_data_pair, label_opts=opts.LabelOpts( position="outside", formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ", background_color="#eee", border_color="#aaa", border_width=1, border_radius=4, rich={ "a": {"color": "#999", "lineHeight": 22, "align": "center"}, "abg": { "backgroundColor": "#e3e3e3", "width": "100%", "align": "right", "height": 22, "borderRadius": [4, 4, 0, 0], }, "hr": { "borderColor": "#aaa", "width": "100%", "borderWidth": 0.5, "height": 0, }, "b": {"fontSize": 16, "lineHeight": 33}, "per": { "color": "#eee", "backgroundColor": "#334455", "padding": [2, 4], "borderRadius": 2, }, }, ), ) .set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", orient="vertical")) .set_series_opts( tooltip_opts=opts.TooltipOpts( trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)" ) ) .render("嵌套饼图.html"))
11、pyecharts绘制中国地图
#导入模块from pyecharts import options as optsfrom pyecharts.charts import Mapimport random# 设置商家A所存在的相关省份,并设置初始数量为0ultraman = [['四川', 0],['台湾', 0],['新疆', 0],['江西', 0],['河南', 0],['辽宁', 0],['青海', 0],['福建', 0],['西藏', 0]]# 设置商家B存在的相关省份,并设置初始数量为0monster = [['广东', 0],['北京', 0],['上海', 0],['台湾', 0],['湖南', 0],['浙江', 0],['甘肃', 0],['黑龙江', 0],['江苏', 0]]def data_filling(array): ''' 作用:给数组数据填充随机数 ''' for i in array: # 随机生成1到1000的随机数 i[1] = random.randint(1,1000)data_filling(ultraman)data_filling(monster)def create_china_map(): ( Map() .add( series_name="商家A", data_pair=ultraman, maptype="china", # 是否默认选中,默认为True is_selected=True, # 是否启用鼠标滚轮缩放和拖动平移,默认为True is_roam=True, # 是否显示图形标记,默认为True is_map_symbol_show=False, # 图元样式配置 itemstyle_opts={ # 常规显示 "normal": {"areaColor": "white", "borderColor": "red"}, # 强调颜色 "emphasis": {"areaColor": "pink"} } ) .add( series_name="商家B", data_pair=monster, maptype="china", ) # 全局配置项 .set_global_opts( # 设置 title_opts=opts.TitleOpts(title="中国地图"), # 设置标准显示 visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False) ) # 系列配置项 .set_series_opts( # 标签名称显示,默认为True label_opts=opts.LabelOpts(is_show=True, color="blue") ) # 生成本地html文件 .render("中国地图.html") ) #调用自定义函数create_china_map()
12、pyecharts绘制世界地图
from pyecharts import options as optsfrom pyecharts.charts import Mapimport random# 设置商家A所存在的相关国家,并设置初始数量为0ultraman = [['Russia', 0],['China', 0],['United States', 0],['Australia', 0]]# 设置商家B存在的相关国家,并设置初始数量为0monster = [['India', 0],['Canada', 0],['France', 0],['Brazil', 0]]def data_filling(array): for i in array: # 随机生成1到1000的随机数 i[1] = random.randint(1,1000) print(i)data_filling(ultraman)data_filling(monster)def create_world_map(): ''' 作用:生成世界地图 ''' ( # 大小设置 Map() .add( series_name="商家A", data_pair=ultraman, maptype="world", ) .add( series_name="商家B", data_pair=monster, maptype="world", ) # 全局配置项 .set_global_opts( # 设置 title_opts=opts.TitleOpts(title="世界地图"), # 设置标准显示 visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False), ) # 系列配置项 .set_series_opts( # 标签名称显示,默认为True label_opts=opts.LabelOpts(is_show=False, color="blue") ) # 生成本地html文件 .render("世界地图.html") )create_world_map()
“怎么使用pyecharts绘制各种数据可视化图表”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!