文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

​Python使用Mediapipe对图像进行手部地标检测

2024-04-02 19:55

关注

概述

在本文中,我们将以深度库即 Mediapipe为基础库,以及其他计算机视觉预处理的CV2库来制作手部地标检测模型。市场上有很多关于这种问题的用例,例如商业相关的虚拟现实、游戏部分的实时体验。

行业用例

智能家居:这是计算机视觉的现代用例之一,人们使用智能家居来过上更舒适的生活,这就是为什么它不再是一个小众领域,它也正在蔓延到普通家庭。

智能电视:我们经常看到这种用例,你可以用手势来改变音量、改变频道等等。

游戏:对于真正的体验,这项技术越来越多地融入互动游戏。

让我们建立我们的手部检测模型

导入库

在这里,我们将导入整个管道中需要的所有库

import cv2
import numpy as np
import mediapipe as mp
import matplotlib.pyplot as plt

使用 Mediapipe 初始化手的地标检测模型

第一步是使用有效参数初始化模型,无论我们采用哪种检测技术,它可以是Mediapipe 或Yolo,初始化模型很重要,遵循相同的原则,我们将遵循所有给定的步骤:

# First step is to initialize the Hands class an store it in a variable
mp_hands = mp.solutions.hands
 
# Now second step is to set the hands function which will hold the landmarks points
hands = mp_hands.Hands(static_image_mode=True, max_num_hands=2, min_detection_confidence=0.3)
 
# Last step is to set up the drawing function of hands landmarks on the image
mp_drawing = mp.solutions.drawing_utils

代码分解:

  1. 首先,使用mp.solutions.hands初始化变量 mp_hands。
  2. 然后使用相同的变量通过mp.solutions.hands.Hands()为hands设置函数。

到目前为止,我们了解了手模型初始化的结构,现在让我们深入研究函数中使用的参数hands

最后,我们将使用mp.solutions.drawing_utils,它将负责在输出图像上绘制所有手的地标,这些地标由我们的 Hands 函数检测到。

读取图像

在这里,我们将首先使用cv2.imread()读取要在其上执行手部检测的图像,并使用matplotlib库来显示该特定输入图像。

# Reading the sample image on which we will perform the detection
sample_img = cv2.imread('media/sample.jpg')
 
# Here we are specifing the size of the figure i.e. 10 -height; 10- width.
plt.figure(figsize = [10, 10])
 
# Here we will display the sample image as the output.
plt.title("Sample Image");plt.axis('off');plt.imshow(sample_img[:,:,::-1]);plt.show()

输出:

执行手部地标检测

因此,现在我们已经初始化了我们的手部检测模型,下一步将是处理输入图像上的手部地标检测,并使用上述初始化模型在该图像上绘制所有 21 个地标,我们将通过以下步骤。

results = hands.process(cv2.cvtColor(sample_img, cv2.COLOR_BGR2RGB))
 
if results.multi_hand_landmarks:
    
   for hand_no, hand_landmarks in enumerate(results.multi_hand_landmarks):
        print(f'HAND NUMBER: {hand_no+1}')
        print('-----------------------')
        
        for i in range(2):
            print(f'{mp_hands.HandLandmark(i).name}:')
            print(f'{hand_landmarks.landmark[mp_hands.HandLandmark(i).value]}')

输出:

代码分解:

  1. 第一步,我们使用Mediapipe 库中的process函数将手部地标检测结果存储在变量results中,同时我们将图像从 BGR 格式转换为 RGB 格式。
  2. 在进入下一步时,我们将首先检查一些验证,是否检测到点,即变量results应该存放了一些结果。
  3. 如果是,那么我们将遍历在图像中检测到的具有手部地标的所有点。
  4. 现在在另一个循环中,我们可以看到只有 2 次迭代,因为我们只想显示手的 2 个地标。
  5. 最后,我们将根据要求打印出所有检测到并过滤掉的地标。

从上面的处理中,我们发现所有检测到的地标都被归一化为通用尺度,但是现在对于用户端,这些缩放点是不相关的,因此我们会将这些地标恢复到原始状态。

image_height, image_width, _ = sample_img.shape
 
if results.multi_hand_landmarks:
 
    for hand_no, hand_landmarks in enumerate(results.multi_hand_landmarks):
        
        print(f'HAND NUMBER: {hand_no+1}')
        print('-----------------------')
        
        for i in range(2):    
            print(f'{mp_hands.HandLandmark(i).name}:') 
            print(f'x: {hand_landmarks.landmark[mp_hands.HandLandmark(i).value].x * image_width}')
            print(f'y: {hand_landmarks.landmark[mp_hands.HandLandmark(i).value].y * image_height}')
            print(f'z: {hand_landmarks.landmark[mp_hands.HandLandmark(i).value].z * image_width}n')

输出:

代码分解:

我们只需要在这里执行一个额外的步骤,即我们将从我们定义的示例图像中获得图像的原始宽度和高度,然后所有步骤将与我们之前所做的相同,唯一不同的将是现在地标点没有专门缩放。

在图像上绘制地标

由于我们已经从上述预处理中获得了手部地标,现在是时候执行我们的最后一步了,即在图像上绘制点,以便我们可以直观地看到我们的手部地标检测模型是如何执行的。

img_copy = sample_img.copy()
 
if results.multi_hand_landmarks:
 
    for hand_no, hand_landmarks in enumerate(results.multi_hand_landmarks):
        
        mp_drawing.draw_landmarks(image = img_copy, landmark_list = hand_landmarks,
                                  connections = mp_hands.HAND_CONNECTIONS)
    fig = plt.figure(figsize = [10, 10])
 
    plt.title("Resultant Image");plt.axis('off');plt.imshow(img_copy[:,:,::-1]);plt.show()

输出:

代码分解:

  1. 首先,我们将创建原始图像的副本,此步骤是出于安全目的,因为我们不想失去图像的原创性。
  2. 然后我们将处理之前所做的验证工作。
  3. 然后我们将遍历手的每个地标。
  4. 最后,借助mp_drawing.draw_landmarks函数,我们将在图像上绘制地标。
  5. 是时候使用 matplotlib 绘制图像了,所以首先,我们将给出图形大小(此处为 width-10 和 height-10),然后在最后绘制,imshow将 BGR 格式转换为 RGB 格式后的图像使用函数,因为对于 RGB 格式更有意义。

结论

在整个管道中,我们首先初始化模型,然后读取图像,查看输入图像,然后进行预处理。我们缩小了地标点,但这些点与用户无关,因此我们将其恢复到原始状态,最后我们将在图像上绘制地标。

尾注

这是本文的 github 链接:https://github.com/Aman-Preet-Singh-Gulati/hands-landmarks-detection-mediapipe

到此这篇关于Python使用Mediapipe对图像进行手部地标检测的文章就介绍到这了,更多相关Python Mediapipe手部地标检测内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯