文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python如何使用cv2.canny进行图像边缘检测

2023-01-28 18:00

关注

使用cv2.canny进行图像边缘检测

CV2提供了提取图像边缘的函数canny。

其算法思想如下:

Canny函数的定义如下:

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 

参数含义如下:

L2gradie=True使用的公式

其中较大的阈值2用于检测图像中明显的边缘,但一般情况下检测的效果不会那么完美,边缘检测出来是断断续续的。所以这时候用较小的第一个阈值用于将这些间断的边缘连接起来。

阈值对检测结果的影响

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('d:\\girl.png')
edges = cv2.Canny(img,100,200,apertureSize=3)
edges2 = cv2.Canny(img,100,200,apertureSize=5)
plt.subplot(131),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image1'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(edges2,cmap = 'gray')
plt.title('Edge Image2'), plt.xticks([]), plt.yticks([])
plt.show()

可以看到,在调整threshold1之后,检测出的边缘增多了。

sobel算子对检测结果的影响

sobel默认的算子大小是3,扩大算子,会获得更多的细节,但是也更能提取图像了。

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('d:\\girl.png')
edges = cv2.Canny(img,100,200,apertureSize=3)
edges2 = cv2.Canny(img,100,200,apertureSize=5)
plt.subplot(131),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image1'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(edges2,cmap = 'gray')
plt.title('Edge Image2'), plt.xticks([]), plt.yticks([])
plt.show()

范数对检测结果的影响

L2gradient=True时,检测出的边缘减少了。

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('d:\\girl.png')
edges = cv2.Canny(img,100,200,L2gradient=False)
edges2 = cv2.Canny(img,100,200,L2gradient=True)
plt.subplot(131),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image1'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(edges2,cmap = 'gray')
plt.title('Edge Image2'), plt.xticks([]), plt.yticks([])
plt.show()

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯