文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用scrapy实现增量式爬取方式

2024-04-02 19:55

关注

实现爬虫的增量式爬取有两种方法,一是在获得页面解析的内容后判断该内容是否已经被爬取过,二是在发送请求之前判断要被请求的url是否已经被爬取过,前一种方法可以感知每个页面的内容是否发生变化,能获取页面新增或者变化的内容,但是由于要对每个url发送请求,所以速度比较慢,而对网站服务器的压力也比较大,后一种无法获得页面变化的内容,但是因为不用对已经爬取过的url发送请求,所以对服务器压力比较小,速度比较快,适用于爬取新增网页

下面用一个小说网站爬虫的例子来介绍在scrapy中这两种方式的实现

1.要爬取的信息

在scrapy中,信息通过item来封装,这里我定义两个item,一个用于封装每本小说的信息,一个用于封装每个章节的信息

1.BookItem

class BookItem(scrapy.Item):
    _id = scrapy.Field() #小说id,用于定位章节信息,章节唯一
    novel_Name = scrapy.Field() #小说名称
    novel_Writer = scrapy.Field()#小说作者
    novel_Type = scrapy.Field()#小说类型
    novel_Status = scrapy.Field()#小说状态,连载或者完结
    novel_UpdateTime = scrapy.Field()#最后更新时间
    novel_Words = scrapy.Field() #总字数
    novel_ImageUrl = scrapy.Field()#封面图片
    novel_AllClick = scrapy.Field()#总点击
    novel_MonthClick = scrapy.Field()#月点击
    novel_WeekClick = scrapy.Field()#周点击
    novel_AllComm = scrapy.Field()#总推荐
    novel_MonthComm = scrapy.Field()#月推荐
    novel_WeekComm = scrapy.Field()#周推荐
    novel_Url = scrapy.Field()#小说url
    novel_Introduction = scrapy.Field()#小说简介

2.ChapterItem

 class ChapterItem(scrapy.Item):
    chapter_Url = scrapy.Field()#章节url
    _id = scrapy.Field()#章节id
    novel_Name = scrapy.Field()#小说名称
    chapter_Name = scrapy.Field()#章节名称
    chapter_Content = scrapy.Field()#内容
    novel_ID = scrapy.Field()#小说id
    is_Error = scrapy.Field()#是否异常

2.解析信息

这里我是用的是scrapy自带的通用爬虫模块,只需要指定信息解析方式,需要跟进的url就够了

1.指定需要跟进的url和回调函数

  allowed_domains = ["23us.so"] #允许爬取的域名
  start_urls = ["http://www.23us.so/xiaoshuo/414.html"]#种子url
  #跟进的url
  rules=(
    Rule(LinkExtractor(allow=("xiaoshuo/\d*\.html")),callback="parse_book_message",follow=True),
    Rule(LinkExtractor(allow=("files/article/html/\d*?/\d*?.index.html")),callback="parse_book_chapter",follow=True),
    Rule(LinkExtractor(allow=("files/article/html/\d*?/\d*?/\d*?.html")),callback="parse_chapter_content",follow=True),
    Rule(LinkExtractor(allow=(".*")),follow=True),
  )

2.解析方法

1.解析书籍信息方法

#解析小说信息页面
  def parse_book_message(self,response):
    if not response.body:
      print(response.url+"已经被爬取过了,跳过")
      return;
    ht = response.body.decode("utf-8")
    text = html.fromstring(ht)
    novel_Url = response.url
    novel_Name = text.xpath(".//dl[@id='content']/dd[1]/h1/text()")[0].split(" ")[0] if response.xpath(".//dl[@id='content']/dd[1]/h1/text()") else "None"
    novel_ImageUrl = text.xpath(".//a[@class='hst']/img/@src")[0] if response.xpath(".//a[@class='hst']/img/@src") else "None"
    novel_ID = int(response.url.split("/")[-1].split(".")[0]) if response.url.split("/")[-1].split(".") else "None"
    novel_Type = text.xpath(".//table[@id='at']/tr[1]/td[1]/a/text()") if response.xpath(".//table[@id='at']/tr[1]/td[1]/a/text()") else "None"
    novel_Writer = "".join(text.xpath(".//table[@id='at']/tr[1]/td[2]/text()")) if response.xpath(".//table[@id='at']/tr[1]/td[2]/text()") else "None"
    novel_Status = "".join(text.xpath(".//table[@id='at']/tr[1]/td[3]/text()")) if response.xpath(".//table[@id='at']/tr[1]/td[3]/text()") else "None"
    novel_Words = self.getNumber("".join(text.xpath(".//table[@id='at']/tr[2]/td[2]/text()"))) if response.xpath(".//table[@id='at']/tr[2]/td[2]/text()") else "None"
    novel_UpdateTime = "".join(text.xpath(".//table[@id='at']/tr[2]/td[3]/text()")) if response.xpath(".//table[@id='at']/tr[2]/td[3]/text()") else "None"
    novel_AllClick = int("".join(text.xpath(".//table[@id='at']/tr[3]/td[1]/text()"))) if response.xpath(".//table[@id='at']/tr[3]/td[1]/text()") else "None"
    novel_MonthClick = int("".join(text.xpath(".//table[@id='at']/tr[3]/td[2]/text()"))) if response.xpath(".//table[@id='at']/tr[3]/td[2]/text()") else "None"
    novel_WeekClick = int("".join(text.xpath(".//table[@id='at']/tr[3]/td[3]/text()"))) if response.xpath(".//table[@id='at']/tr[3]/td[3]/text()") else "None"
    novel_AllComm = int("".join(text.xpath(".//table[@id='at']/tr[4]/td[1]/text()"))) if response.xpath(".//table[@id='at']/tr[4]/td[1]/text()") else "None"
    novel_MonthComm = int("".join(text.xpath(".//table[@id='at']/tr[4]/td[3]/text()"))) if response.xpath(".//table[@id='at']/tr[4]/td[2]/text()") else "None"
    novel_WeekComm = int("".join(text.xpath(".//table[@id='at']/tr[4]/td[3]/text()"))) if response.xpath(".//table[@id='at']/tr[4]/td[3]/text()") else "None"
    pattern = re.compile('<p>(.*)<br')
    match = pattern.search(ht)
    novel_Introduction = "".join(match.group(1).replace("&nbsp;","")) if match else "None"
     #封装小说信息类
    bookitem = BookItem(
          novel_Type = novel_Type[0],
          novel_Name = novel_Name,
          novel_ImageUrl = novel_ImageUrl,
          _id = novel_ID,   #小说id作为唯一标识符
          novel_Writer = novel_Writer,
          novel_Status = novel_Status,
          novel_Words = novel_Words,
          novel_UpdateTime = novel_UpdateTime,
          novel_AllClick = novel_AllClick,
          novel_MonthClick = novel_MonthClick,
          novel_WeekClick = novel_WeekClick,
          novel_AllComm = novel_AllComm,
          novel_MonthComm = novel_MonthComm,
          novel_WeekComm = novel_WeekComm,
          novel_Url = novel_Url,
          novel_Introduction = novel_Introduction,
    )
    return bookitem

2.解析章节信息

def parse_chapter_content(self,response):
    if not response.body:
      print(response.url+"已经被爬取过了,跳过")
      return;
    ht = response.body.decode('utf-8')
    text = html.fromstring(ht)
    soup = BeautifulSoup(ht)
    novel_ID = response.url.split("/")[-2]
    novel_Name = text.xpath(".//p[@class='fr']/following-sibling::a[3]/text()")[0]
    chapter_Name = text.xpath(".//h1[1]/text()")[0]
    '''
    chapter_Content = "".join("".join(text.xpath(".//dd[@id='contents']/text()")).split())
    if len(chapter_Content) < 25:
      chapter_Content = "".join("".join(text.xpath(".//dd[@id='contents']//*/text()")))
    pattern = re.compile('dd id="contents".*?>(.*?)</dd>')
    match = pattern.search(ht)
    chapter_Content = "".join(match.group(1).replace("&nbsp;","").split()) if match else "爬取错误"
    '''
    result,number = re.subn("<.*?>","",str(soup.find("dd",id='contents')))
    chapter_Content = "".join(result.split())
    print(len(chapter_Content))
    novel_ID = response.url.split("/")[-2]
    return ChapterItem(
          chapter_Url = response.url,
          _id=int(response.url.split("/")[-1].split(".")[0]),
          novel_Name=novel_Name,
          chapter_Name=chapter_Name,
          chapter_Content= chapter_Content,
          novel_ID = novel_ID,
          is_Error = len(chapter_Content) < 3000
          )

3.scrapy中实现增量式爬取的几种方式

1.缓存

通过开启缓存,将每个请求缓存至本地,下次爬取时,scrapy会优先从本地缓存中获得response,这种模式下,再次请求已爬取的网页不用从网络中获得响应,所以不受带宽影响,对服务器也不会造成额外的压力,但是无法获取网页变化的内容,速度也没有第二种方式快,而且缓存的文件会占用比较大的内存,在setting.py的以下注释用于设置缓存

#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

这种方式比较适合内存比较大的主机使用,我的阿里云是最低配的,在爬取半个晚上接近27W个章节信息后,内存就用完了

2.对item实现去重

本文开头的第一种方式,实现方法是在pipelines.py中进行设置,即在持久化数据之前判断数据是否已经存在,这里我用的是mongodb持久化数据,逻辑如下

  #处理书信息
  def process_BookItem(self,item):
    bookItemDick = dict(item)
    try:
      self.bookColl.insert(bookItemDick)
      print("插入小说《%s》的所有信息"%item["novel_Name"])
    except Exception:
      print("小说《%s》已经存在"%item["novel_Name"])
  #处理每个章节
  def process_ChapterItem(self,item):
    try:
      self.contentColl.insert(dict(item))
      print('插入小说《%s》的章节"%s"'%(item['novel_Name'],item['chapter_Name']))
    except Exception:
      print("%s存在了,跳过"%item["chapter_Name"])
  def process_item(self, item, spider):
    '''
    if isinstance(item,ChaptersItem):
      self.process_ChaptersItem(item)
    '''
    if isinstance(item,BookItem):
      self.process_BookItem(item)
    if isinstance(item,ChapterItem):
      self.process_ChapterItem(item)
    return item

两种方法判断mongodb中是否存在已有的数据,一是先查询后插入,二是先设置唯一索引或者主键再直接插入,由于mongodb的特点是插入块,查询慢,所以这里直接插入,需要将唯一信息设置为”_id”列,或者设置为唯一索引,在mongodb中设置方法如下

db.集合名.ensureIndex({"要设置索引的列名":1},{"unique":1})

需要用什么信息实现去重,就将什么信息设置为唯一索引即可(小说章节信息由于数据量比较大,用于查询的列最好设置索引,要不然会非常慢),这种方法对于服务器的压力太大,而且速度比较慢,我用的是第二种方法,即对已爬取的url进行去重

3.对url实现去重

对我而言,这种方法是最好的方法,因为速度快,对网站服务器的压力也比较小,不过网上的资料比较少,后来在文档中发现scrapy可以自定义下载中间件,才解决了这个问题

文档原文如下

class scrapy.downloadermiddlewares.DownloaderMiddleware

process_request(request, spider) 当每个request通过下载中间件时,该方法被调用。

process_request() 必须返回其中之一: 返回 None 、返回一个 Response 对象、返回一个 Request对象或raise IgnoreRequest 。

如果其返回 None ,Scrapy将继续处理该request,执行其他的中间件的相应方法,直到合适的下载器处理函数(downloadhandler)被调用, 该request被执行(其response被下载)。

如果其返回 Response 对象,Scrapy将不会调用 任何 其他的 process_request() 或process_exception() 方法,或相应地下载函数; 其将返回该response。 已安装的中间件的process_response() 方法则会在每个response返回时被调用。

如果其返回 Request 对象,Scrapy则停止调用process_request方法并重新调度返回的request。当新返回的request被执行后,相应地中间件链将会根据下载的response被调用。

如果其raise一个 IgnoreRequest 异常,则安装的下载中间件的 process_exception()方法会被调用。如果没有任何一个方法处理该异常,则request的errback(Request.errback)方法会被调用。如果没有代码处理抛出的异常,则该异常被忽略且不记录(不同于其他异常那样)。

所以只需要在process_request中实现去重的逻辑就可以了,代码如下

class UrlFilter(object):
  #初始化过滤器(使用mongodb过滤)
  def __init__(self):
    self.settings = get_project_settings()
    self.client = pymongo.MongoClient(
      host = self.settings['MONGO_HOST'],
      port = self.settings['MONGO_PORT'])
    self.db = self.client[self.settings['MONGO_DB']]
    self.bookColl = self.db[self.settings['MONGO_BOOK_COLL']]
    #self.chapterColl = self.db[self.settings['MONGO_CHAPTER_COLL']]
    self.contentColl = self.db[self.settings['MONGO_CONTENT_COLL']]
  def process_request(self,request,spider):
    if (self.bookColl.count({"novel_Url":request.url}) > 0) or (self.contentColl.count({"chapter_Url":request.url}) > 0):
      return http.Response(url=request.url,body=None)

但是又会有一个问题,就是有可能下次开启时,种子url已经被爬取过了,爬虫会直接关闭,后来想到一个笨方法解决了这个问题,即在pipeline.py里的open_spider方法中再爬虫开启时删除对种子url的缓存

def open_spider(self,spider):            
    self.bookColl.remove({"novel_Url":"http://www.23us.so/xiaoshuo/414.html"})

4.结果

目前一个晚上爬取了大约1000部小说35W个章节的信息,还在继续爬取中

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯