文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何使用scrapy实现增量式爬取

2023-07-02 11:22

关注

本篇内容主要讲解“如何使用scrapy实现增量式爬取”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何使用scrapy实现增量式爬取”吧!

1.要爬取的信息

在scrapy中,信息通过item来封装,这里我定义两个item,一个用于封装每本小说的信息,一个用于封装每个章节的信息

1.BookItem

class BookItem(scrapy.Item):    _id = scrapy.Field() #小说id,用于定位章节信息,章节唯一    novel_Name = scrapy.Field() #小说名称    novel_Writer = scrapy.Field()#小说作者    novel_Type = scrapy.Field()#小说类型    novel_Status = scrapy.Field()#小说状态,连载或者完结    novel_UpdateTime = scrapy.Field()#最后更新时间    novel_Words = scrapy.Field() #总字数    novel_ImageUrl = scrapy.Field()#封面图片    novel_AllClick = scrapy.Field()#总点击    novel_MonthClick = scrapy.Field()#月点击    novel_WeekClick = scrapy.Field()#周点击    novel_AllComm = scrapy.Field()#总推荐    novel_MonthComm = scrapy.Field()#月推荐    novel_WeekComm = scrapy.Field()#周推荐    novel_Url = scrapy.Field()#小说url    novel_Introduction = scrapy.Field()#小说简介

2.ChapterItem

 class ChapterItem(scrapy.Item):    chapter_Url = scrapy.Field()#章节url    _id = scrapy.Field()#章节id    novel_Name = scrapy.Field()#小说名称    chapter_Name = scrapy.Field()#章节名称    chapter_Content = scrapy.Field()#内容    novel_ID = scrapy.Field()#小说id    is_Error = scrapy.Field()#是否异常

2.解析信息

这里我是用的是scrapy自带的通用爬虫模块,只需要指定信息解析方式,需要跟进的url就够了

1.指定需要跟进的url和回调函数

  allowed_domains = ["23us.so"] #允许爬取的域名  start_urls = ["http://www.23us.so/xiaoshuo/414.html"]#种子url  #跟进的url  rules=(    Rule(LinkExtractor(allow=("xiaoshuo/\d*\.html")),callback="parse_book_message",follow=True),    Rule(LinkExtractor(allow=("files/article/html/\d*?/\d*?.index.html")),callback="parse_book_chapter",follow=True),    Rule(LinkExtractor(allow=("files/article/html/\d*?/\d*?/\d*?.html")),callback="parse_chapter_content",follow=True),    Rule(LinkExtractor(allow=(".*")),follow=True),  )

2.解析方法

1.解析书籍信息方法

#解析小说信息页面  def parse_book_message(self,response):    if not response.body:      print(response.url+"已经被爬取过了,跳过")      return;    ht = response.body.decode("utf-8")    text = html.fromstring(ht)    novel_Url = response.url    novel_Name = text.xpath(".//dl[@id='content']/dd[1]/h2/text()")[0].split(" ")[0] if response.xpath(".//dl[@id='content']/dd[1]/h2/text()") else "None"    novel_ImageUrl = text.xpath(".//a[@class='hst']/img/@src")[0] if response.xpath(".//a[@class='hst']/img/@src") else "None"    novel_ID = int(response.url.split("/")[-1].split(".")[0]) if response.url.split("/")[-1].split(".") else "None"    novel_Type = text.xpath(".//table[@id='at']/tr[1]/td[1]/a/text()") if response.xpath(".//table[@id='at']/tr[1]/td[1]/a/text()") else "None"    novel_Writer = "".join(text.xpath(".//table[@id='at']/tr[1]/td[2]/text()")) if response.xpath(".//table[@id='at']/tr[1]/td[2]/text()") else "None"    novel_Status = "".join(text.xpath(".//table[@id='at']/tr[1]/td[3]/text()")) if response.xpath(".//table[@id='at']/tr[1]/td[3]/text()") else "None"    novel_Words = self.getNumber("".join(text.xpath(".//table[@id='at']/tr[2]/td[2]/text()"))) if response.xpath(".//table[@id='at']/tr[2]/td[2]/text()") else "None"    novel_UpdateTime = "".join(text.xpath(".//table[@id='at']/tr[2]/td[3]/text()")) if response.xpath(".//table[@id='at']/tr[2]/td[3]/text()") else "None"    novel_AllClick = int("".join(text.xpath(".//table[@id='at']/tr[3]/td[1]/text()"))) if response.xpath(".//table[@id='at']/tr[3]/td[1]/text()") else "None"    novel_MonthClick = int("".join(text.xpath(".//table[@id='at']/tr[3]/td[2]/text()"))) if response.xpath(".//table[@id='at']/tr[3]/td[2]/text()") else "None"    novel_WeekClick = int("".join(text.xpath(".//table[@id='at']/tr[3]/td[3]/text()"))) if response.xpath(".//table[@id='at']/tr[3]/td[3]/text()") else "None"    novel_AllComm = int("".join(text.xpath(".//table[@id='at']/tr[4]/td[1]/text()"))) if response.xpath(".//table[@id='at']/tr[4]/td[1]/text()") else "None"    novel_MonthComm = int("".join(text.xpath(".//table[@id='at']/tr[4]/td[3]/text()"))) if response.xpath(".//table[@id='at']/tr[4]/td[2]/text()") else "None"    novel_WeekComm = int("".join(text.xpath(".//table[@id='at']/tr[4]/td[3]/text()"))) if response.xpath(".//table[@id='at']/tr[4]/td[3]/text()") else "None"    pattern = re.compile('<p>(.*)<br')    match = pattern.search(ht)    novel_Introduction = "".join(match.group(1).replace("&nbsp;","")) if match else "None"     #封装小说信息类    bookitem = BookItem(          novel_Type = novel_Type[0],          novel_Name = novel_Name,          novel_ImageUrl = novel_ImageUrl,          _id = novel_ID,   #小说id作为唯一标识符          novel_Writer = novel_Writer,          novel_Status = novel_Status,          novel_Words = novel_Words,          novel_UpdateTime = novel_UpdateTime,          novel_AllClick = novel_AllClick,          novel_MonthClick = novel_MonthClick,          novel_WeekClick = novel_WeekClick,          novel_AllComm = novel_AllComm,          novel_MonthComm = novel_MonthComm,          novel_WeekComm = novel_WeekComm,          novel_Url = novel_Url,          novel_Introduction = novel_Introduction,    )    return bookitem

2.解析章节信息

def parse_chapter_content(self,response):    if not response.body:      print(response.url+"已经被爬取过了,跳过")      return;    ht = response.body.decode('utf-8')    text = html.fromstring(ht)    soup = BeautifulSoup(ht)    novel_ID = response.url.split("/")[-2]    novel_Name = text.xpath(".//p[@class='fr']/following-sibling::a[3]/text()")[0]    chapter_Name = text.xpath(".//h2[1]/text()")[0]    '''    chapter_Content = "".join("".join(text.xpath(".//dd[@id='contents']/text()")).split())    if len(chapter_Content) < 25:      chapter_Content = "".join("".join(text.xpath(".//dd[@id='contents']//*/text()")))    pattern = re.compile('dd id="contents".*?>(.*?)</dd>')    match = pattern.search(ht)    chapter_Content = "".join(match.group(1).replace("&nbsp;","").split()) if match else "爬取错误"    '''    result,number = re.subn("<.*?>","",str(soup.find("dd",id='contents')))    chapter_Content = "".join(result.split())    print(len(chapter_Content))    novel_ID = response.url.split("/")[-2]    return ChapterItem(          chapter_Url = response.url,          _id=int(response.url.split("/")[-1].split(".")[0]),          novel_Name=novel_Name,          chapter_Name=chapter_Name,          chapter_Content= chapter_Content,          novel_ID = novel_ID,          is_Error = len(chapter_Content) < 3000          )

3.scrapy中实现增量式爬取的几种方式

1.缓存

通过开启缓存,将每个请求缓存至本地,下次爬取时,scrapy会优先从本地缓存中获得response,这种模式下,再次请求已爬取的网页不用从网络中获得响应,所以不受带宽影响,对服务器也不会造成额外的压力,但是无法获取网页变化的内容,速度也没有第二种方式快,而且缓存的文件会占用比较大的内存,在setting.py的以下注释用于设置缓存

#HTTPCACHE_ENABLED = True#HTTPCACHE_EXPIRATION_SECS = 0#HTTPCACHE_DIR = 'httpcache'#HTTPCACHE_IGNORE_HTTP_CODES = []#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

这种方式比较适合内存比较大的主机使用,我的阿里云是最低配的,在爬取半个晚上接近27W个章节信息后,内存就用完了

2.对item实现去重

本文开头的第一种方式,实现方法是在pipelines.py中进行设置,即在持久化数据之前判断数据是否已经存在,这里我用的是mongodb持久化数据,逻辑如下

  #处理书信息  def process_BookItem(self,item):    bookItemDick = dict(item)    try:      self.bookColl.insert(bookItemDick)      print("插入小说《%s》的所有信息"%item["novel_Name"])    except Exception:      print("小说《%s》已经存在"%item["novel_Name"])  #处理每个章节  def process_ChapterItem(self,item):    try:      self.contentColl.insert(dict(item))      print('插入小说《%s》的章节"%s"'%(item['novel_Name'],item['chapter_Name']))    except Exception:      print("%s存在了,跳过"%item["chapter_Name"])  def process_item(self, item, spider):    '''    if isinstance(item,ChaptersItem):      self.process_ChaptersItem(item)    '''    if isinstance(item,BookItem):      self.process_BookItem(item)    if isinstance(item,ChapterItem):      self.process_ChapterItem(item)    return item

两种方法判断mongodb中是否存在已有的数据,一是先查询后插入,二是先设置唯一索引或者主键再直接插入,由于mongodb的特点是插入块,查询慢,所以这里直接插入,需要将唯一信息设置为”_id”列,或者设置为唯一索引,在mongodb中设置方法如下

db.集合名.ensureIndex({"要设置索引的列名":1},{"unique":1})

需要用什么信息实现去重,就将什么信息设置为唯一索引即可(小说章节信息由于数据量比较大,用于查询的列最好设置索引,要不然会非常慢),这种方法对于服务器的压力太大,而且速度比较慢,我用的是第二种方法,即对已爬取的url进行去重

3.对url实现去重

对我而言,这种方法是最好的方法,因为速度快,对网站服务器的压力也比较小,不过网上的资料比较少,后来在文档中发现scrapy可以自定义下载中间件,才解决了这个问题

文档原文如下

class scrapy.downloadermiddlewares.DownloaderMiddleware

process_request(request, spider) 当每个request通过下载中间件时,该方法被调用。

process_request() 必须返回其中之一: 返回 None 、返回一个 Response 对象、返回一个 Request对象或raise IgnoreRequest 。

如果其返回 None ,Scrapy将继续处理该request,执行其他的中间件的相应方法,直到合适的下载器处理函数(downloadhandler)被调用, 该request被执行(其response被下载)。

如果其返回 Response 对象,Scrapy将不会调用 任何 其他的 process_request() 或process_exception() 方法,或相应地下载函数; 其将返回该response。 已安装的中间件的process_response() 方法则会在每个response返回时被调用。

如果其返回 Request 对象,Scrapy则停止调用process_request方法并重新调度返回的request。当新返回的request被执行后,相应地中间件链将会根据下载的response被调用。

如果其raise一个 IgnoreRequest 异常,则安装的下载中间件的 process_exception()方法会被调用。如果没有任何一个方法处理该异常,则request的errback(Request.errback)方法会被调用。如果没有代码处理抛出的异常,则该异常被忽略且不记录(不同于其他异常那样)。

所以只需要在process_request中实现去重的逻辑就可以了,代码如下

class UrlFilter(object):  #初始化过滤器(使用mongodb过滤)  def __init__(self):    self.settings = get_project_settings()    self.client = pymongo.MongoClient(      host = self.settings['MONGO_HOST'],      port = self.settings['MONGO_PORT'])    self.db = self.client[self.settings['MONGO_DB']]    self.bookColl = self.db[self.settings['MONGO_BOOK_COLL']]    #self.chapterColl = self.db[self.settings['MONGO_CHAPTER_COLL']]    self.contentColl = self.db[self.settings['MONGO_CONTENT_COLL']]  def process_request(self,request,spider):    if (self.bookColl.count({"novel_Url":request.url}) > 0) or (self.contentColl.count({"chapter_Url":request.url}) > 0):      return http.Response(url=request.url,body=None)

但是又会有一个问题,就是有可能下次开启时,种子url已经被爬取过了,爬虫会直接关闭,后来想到一个笨方法解决了这个问题,即在pipeline.py里的open_spider方法中再爬虫开启时删除对种子url的缓存

def open_spider(self,spider):                self.bookColl.remove({"novel_Url":"http://www.23us.so/xiaoshuo/414.html"})

4.结果

如何使用scrapy实现增量式爬取

如何使用scrapy实现增量式爬取

如何使用scrapy实现增量式爬取

如何使用scrapy实现增量式爬取

到此,相信大家对“如何使用scrapy实现增量式爬取”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯