文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python用pyecharts实现地图数据可视化的方法

2023-06-14 06:14

关注

这篇文章给大家分享的是有关python用pyecharts实现地图数据可视化的方法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

有的时候,我们需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较。但直方图在视觉上并不能很好突出地区间的差异,因此考虑地理可视化,通过地图上位置(地理位置)和颜色(颜色深浅代表数值差异)两个元素加以体现。在本文案例中,基于第三方库pyecharts,对中国各省2010-2019年的GDP进行绘制。

我们先来看看最终效果:

python用pyecharts实现地图数据可视化的方法

关于绘图数据

基于时间和截面两个维度,可把数据分为截面数据、时间序列及面板数据。在本文案例中,某一年各省的GDP属于截面数据,多年各省的GDP属于面板数据。因此,按照先易后难的原则,先对某一年各省的GDP进行地理可视化,再进一步构建for循环对多年各省的GDP进行可视化,形成最终的时间轮播图。

python用pyecharts实现地图数据可视化的方法

数据来源:本文案例使用的GDP数据来源于国家统计局官网,可在线下载到本地,保存为csv或excel格式,用pandas中的DataFrame进行读取。

地理可视化

一、全国各省单年GDP的可视化

在pyecharts中可使用Map类型实现地理可视化,其原理是通过不同颜色填充以展现不同的数据,options实现图表的调整及修饰。代码展示如下:

import pandas as pdfrom pyecharts.charts import Mapimport pyecharts.options as optsframe = pd.read_csv('C:\\Users\\dell\\Desktop\\分省年度数据2.csv',encoding='GBK')map = Map()map.add("我国地区的GDP",frame[['地区','2019年']].values.tolist(),"china")map.set_global_opts(visualmap_opts=opts.VisualMapOpts(min_=500,max_=12000))map.render("2019年全国各地区GDP.html")

解析:add()来实现了数据的加载,在配置3个参数中——第1个是图的标题,第2个通过.values.tolist()加载要显示的数据,第3个"china"确保显示的地图类型是中国。有个细节需要注意,Map 使用的中国各省份需要将全部的省、市、自治区等去掉。set_global_opts()实现了用颜色标记数据的数值大小,参数min_和max_分别代表最小值和最大值。render()用于生成并保存图像。

效果如下:

python用pyecharts实现地图数据可视化的方法

然而数据分布并不平均,可以通过is_piecewise 属性表述分段自定义不同的颜色区间:

geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(    is_piecewise=True,    pieces=[        {"min":0,"max":10000,"label":"1~10000","color":"cyan"},        {"min":10001,"max":20000,"label":"10001~20000","color":"yellow"},        {"min":20001,"max":50000,"label":"20001~50000","color":"orange"},        {"min":50001,"max":80000,"label":"50001~80000","color":"coral"},        {"min":80001,"max":120000,"label":"80001~120000","color":"red"},    ]   ))

效果如下:

python用pyecharts实现地图数据可视化的方法

二、全国各省多年GDP的可视化

由于要绘制2010-2019年的GDP数据,可以考虑构建一个for循环,通过str(i)+"年"的形式访问数据表格中处于不同列的各年GDP数据。绘制轮播图可考虑调用Timeline,代码如下:

import pandas as pdfrom pyecharts import options as optsfrom pyecharts.charts import Map, Timelineframe = pd.read_csv('C:\\Users\\dell\\Desktop\\分省年度数据2.csv',encoding='GBK')tl = Timeline()for i in range(2010, 2020):    map0 = (        Map()        .add("省份",frame[['地区',str(i)+'年']].values.tolist(), "china")        .set_global_opts(            title_opts=opts.TitleOpts(title="Map-{}年GDP(亿元)".format(i)),            visualmap_opts=opts.VisualMapOpts(                is_piecewise=True,                pieces=[                    {"min":0,"max":10000,"label":"1~10000","color":"cyan"},                    {"min":10001,"max":20000,"label":"10001~20000","color":"yellow"},                    {"min":20001,"max":50000,"label":"20001~50000","color":"orange"},                    {"min":50001,"max":80000,"label":"50001~80000","color":"coral"},                    {"min":80001,"max":120000,"label":"80001~12000","color":"red"},                ]   ),))    tl.add(map0, "{}年".format(i))tl.render("2010~2019年全国各地区GDP.html")

效果如下:

python用pyecharts实现地图数据可视化的方法

本案例的实现并不复杂,在pyecharts官方的参考案例基础上稍加改动即可实现。作为一名初学者,模仿案例是提升功力的重要途径,通过模仿可以有效吃透代码要具体实现的功能,量变到质变,就能根据自己工作和学习的需要进行灵活应用。

感谢各位的阅读!关于“python用pyecharts实现地图数据可视化的方法”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯