文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Spring Boot异步线程间数据传递的四种方式

2023-01-06 18:00

关注

Spring Boot 自定义线程池实现异步开发

Spring Boot 自定义线程池实现异步开发相信看过的都了解,但是在实际开发中需要在父子线程之间传递一些数据,比如用户信息,链路信息等等

比如用户登录信息使用ThreadLocal存放保证线程隔离,代码如下:


public class OauthContext {
    private static  final  ThreadLocal<LoginVal> loginValThreadLocal=new ThreadLocal<>();
    public static  LoginVal get(){
        return loginValThreadLocal.get();
    }
    public static void set(LoginVal loginVal){
        loginValThreadLocal.set(loginVal);
    }
    public static void clear(){
        loginValThreadLocal.remove();
    }
}

那么子线程想要获取这个LoginVal如何做呢?

今天就来介绍几种优雅的方式实现Spring Boot 内部的父子线程的数据传递。

1. 手动设置

每执行一次异步线程都要分为两步:

代码如下:

public void handlerAsync() {
        //1. 获取父线程的loginVal
        LoginVal loginVal = OauthContext.get();
        log.info("父线程的值:{}",OauthContext.get());
        CompletableFuture.runAsync(()->{
            //2. 设置子线程的值,复用
           OauthContext.set(loginVal);
           log.info("子线程的值:{}",OauthContext.get());
        });
    }

虽然能够实现目的,但是每次开异步线程都需要手动设置,重复代码太多,看了头疼,你认为优雅吗?

2. 线程池设置TaskDecorator

TaskDecorator是什么?官方api的大致意思:这是一个执行回调方法的装饰器,主要应用于传递上下文,或者提供任务的监控/统计信息。

知道有这么一个东西,如何去使用?

TaskDecorator是一个接口,首先需要去实现它,代码如下:


public class ContextTaskDecorator implements TaskDecorator {
    @Override
    public Runnable decorate(Runnable runnable) {
        //获取父线程的loginVal
        LoginVal loginVal = OauthContext.get();
        return () -> {
            try {
                // 将主线程的请求信息,设置到子线程中
                OauthContext.set(loginVal);
                // 执行子线程,这一步不要忘了
                runnable.run();
            } finally {
                // 线程结束,清空这些信息,否则可能造成内存泄漏
                OauthContext.clear();
            }
        };
    }
}

这里我只是设置了LoginVal,实际开发中其他的共享数据,比如SecurityContextRequestAttributes....

TaskDecorator需要结合线程池使用,实际开发中异步线程建议使用线程池,只需要在对应的线程池配置一下,代码如下:

@Bean("taskExecutor")
public ThreadPoolTaskExecutor taskExecutor() {
        ThreadPoolTaskExecutor poolTaskExecutor = new ThreadPoolTaskExecutor();
        poolTaskExecutor.setCorePoolSize(xx);
        poolTaskExecutor.setMaxPoolSize(xx);
        // 设置线程活跃时间(秒)
        poolTaskExecutor.setKeepAliveSeconds(xx);
        // 设置队列容量
        poolTaskExecutor.setQueueCapacity(xx);
        //设置TaskDecorator,用于解决父子线程间的数据复用
        poolTaskExecutor.setTaskDecorator(new ContextTaskDecorator());
        poolTaskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        // 等待所有任务结束后再关闭线程池
        poolTaskExecutor.setWaitForTasksToCompleteOnShutdown(true);
        return poolTaskExecutor;
    }

此时业务代码就不需要去设置子线程的值,直接使用即可,代码如下:

public void handlerAsync() {
        log.info("父线程的用户信息:{}", OauthContext.get());
        //执行异步任务,需要指定的线程池
        CompletableFuture.runAsync(()-&gt; log.info("子线程的用户信息:{}", OauthContext.get()),taskExecutor);
    }

来看一下结果,如下图:

这里使用的是CompletableFuture执行异步任务,使用@Async这个注解同样是可行的。

注意:无论使用何种方式,都需要指定线程池

3. InheritableThreadLocal

这种方案不建议使用,InheritableThreadLocal虽然能够实现父子线程间的复用,但是在线程池中使用会存在复用的问题,具体的可以看陈某之前的文章:微服务中使用阿里开源的TTL,优雅的实现身份信息的线程间复用

这种方案使用也是非常简单,直接用InheritableThreadLocal替换ThreadLocal即可,代码如下:


public class OauthContext {
    private static  final  InheritableThreadLocal<LoginVal> loginValThreadLocal=new InheritableThreadLocal<>();
    public static  LoginVal get(){
        return loginValThreadLocal.get();
    }
    public static void set(LoginVal loginVal){
        loginValThreadLocal.set(loginVal);
    }
    public static void clear(){
        loginValThreadLocal.remove();
    }
}

4. TransmittableThreadLocal

TransmittableThreadLocal是阿里开源的工具,弥补了InheritableThreadLocal的缺陷,在使用线程池等会池化复用线程的执行组件情况下,提供ThreadLocal值的传递功能,解决异步执行时上下文传递的问题。

使用起来也是非常简单,添加依赖如下:

<dependency>
	<groupId>com.alibaba</groupId>
	<artifactId>transmittable-thread-local</artifactId>
	<version>2.14.2</version>
</dependency>

OauthContext改造代码如下:


public class OauthContext {
    private static  final TransmittableThreadLocal<LoginVal> loginValThreadLocal=new TransmittableThreadLocal<>();
    public static  LoginVal get(){
        return loginValThreadLocal.get();
    }
    public static void set(LoginVal loginVal){
        loginValThreadLocal.set(loginVal);
    }
    public static void clear(){
        loginValThreadLocal.remove();
    }
}

关于TransmittableThreadLocal想深入了解其原理可以看陈某之前的文章:微服务中使用阿里开源的TTL,优雅的实现身份信息的线程间复用,应用还是非常广泛的

TransmittableThreadLocal原理

从定义来看,TransimittableThreadLocal继承于InheritableThreadLocal,并实现TtlCopier接口,它里面只有一个copy方法。所以主要是对InheritableThreadLocal的扩展。

public class TransmittableThreadLocal<T> extends InheritableThreadLocal<T> implements TtlCopier<T> 

TransimittableThreadLocal中添加holder属性。这个属性的作用就是被标记为具备线程传递资格的对象都会被添加到这个对象中。

要标记一个类,比较容易想到的方式,就是给这个类新增一个Type字段,还有一个方法就是将具备这种类型的的对象都添加到一个静态全局集合中。之后使用时,这个集合里的所有值都具备这个标记。

// 1. holder本身是一个InheritableThreadLocal对象
// 2. 这个holder对象的value是WeakHashMap<TransmittableThreadLocal<Object>, ?>
//   2.1 WeekHashMap的value总是null,且不可能被使用。
//    2.2 WeekHasshMap支持value=null
private static InheritableThreadLocal<WeakHashMap<TransmittableThreadLocal<Object>, ?>> holder = new InheritableThreadLocal<WeakHashMap<TransmittableThreadLocal<Object>, ?>>() {
  @Override
  protected WeakHashMap<TransmittableThreadLocal<Object>, ?> initialValue() {
    return new WeakHashMap<TransmittableThreadLocal<Object>, Object>();
  }
  
  @Override
  protected WeakHashMap<TransmittableThreadLocal<Object>, ?> childValue(WeakHashMap<TransmittableThreadLocal<Object>, ?> parentValue) {
    return new WeakHashMap<TransmittableThreadLocal<Object>, Object>(parentValue);
  }
};

应用代码是通过TtlExecutors工具类对线程池对象进行包装。工具类只是简单的判断,输入的线程池是否已经被包装过、非空校验等,然后返回包装类ExecutorServiceTtlWrapper。根据不同的线程池类型,有不同和的包装类。

@Nullable
public static ExecutorService getTtlExecutorService(@Nullable ExecutorService executorService) {
  if (TtlAgent.isTtlAgentLoaded() || executorService == null || executorService instanceof TtlEnhanced) {
    return executorService;
  }
  return new ExecutorServiceTtlWrapper(executorService);
}

进入包装类ExecutorServiceTtlWrapper。可以注意到不论是通过ExecutorServiceTtlWrapper#submit方法或者是ExecutorTtlWrapper#execute方法,都会将线程对象包装成TtlCallable或者TtlRunnable,用于在真正执行run方法前做一些业务逻辑。


@NonNull
@Override
public <T> Future<T> submit(@NonNull Callable<T> task) {
  return executorService.submit(TtlCallable.get(task));
}

@Override
public void execute(@NonNull Runnable command) {
  executor.execute(TtlRunnable.get(command));
}

所以,重点的核心逻辑应该是在TtlCallable#call()或者TtlRunnable#run()中。以下以TtlCallable为例,TtlRunnable同理类似。在分析call()方法之前,先看一个类Transmitter

public static class Transmitter {
  
  @NonNull
  public static Object capture() {
    return new Snapshot(captureTtlValues(), captureThreadLocalValues());
  }
    
  private static HashMap<TransmittableThreadLocal<Object>, Object> captureTtlValues() {
    HashMap<TransmittableThreadLocal<Object>, Object> ttl2Value = 
      new HashMap<TransmittableThreadLocal<Object>, Object>();
    for (TransmittableThreadLocal<Object> threadLocal : holder.get().keySet()) {
      ttl2Value.put(threadLocal, threadLocal.copyValue());
    }
    return ttl2Value;
  }
  
  private static HashMap<ThreadLocal<Object>, Object> captureThreadLocalValues() {
    final HashMap<ThreadLocal<Object>, Object> threadLocal2Value = 
      new HashMap<ThreadLocal<Object>, Object>();
    for(Map.Entry<ThreadLocal<Object>,TtlCopier<Object>>entry:threadLocalHolder.entrySet()){
      final ThreadLocal<Object> threadLocal = entry.getKey();
      final TtlCopier<Object> copier = entry.getValue();
      threadLocal2Value.put(threadLocal, copier.copy(threadLocal.get()));
    }
    return threadLocal2Value;
  }
  
  @NonNull
  public static Object replay(@NonNull Object captured) {
    final Snapshot capturedSnapshot = (Snapshot) captured;
    return new Snapshot(replayTtlValues(capturedSnapshot.ttl2Value), 
                        replayThreadLocalValues(capturedSnapshot.threadLocal2Value));
  }
  
  @NonNull
  private static HashMap<TransmittableThreadLocal<Object>, Object> replayTtlValues(@NonNull HashMap<TransmittableThreadLocal<Object>, Object> captured) {
    // 创建副本backup
    HashMap<TransmittableThreadLocal<Object>, Object> backup = 
      new HashMap<TransmittableThreadLocal<Object>, Object>();
    for (final Iterator<TransmittableThreadLocal<Object>> iterator = holder.get().keySet().iterator(); iterator.hasNext(); ) {
      TransmittableThreadLocal<Object> threadLocal = iterator.next();
      // 对当前线程的本地变量进行副本拷贝
      backup.put(threadLocal, threadLocal.get());
      // 若出现调用线程中不存在某个线程变量,而线程池中线程有,则删除线程池中对应的本地变量
      if (!captured.containsKey(threadLocal)) {
        iterator.remove();
        threadLocal.superRemove();
      }
    }
    // 将捕获的TTL值打入线程池获取到的线程TTL中。
    setTtlValuesTo(captured);
    // 是一个扩展点,调用TTL的beforeExecute方法。默认实现为空
    doExecuteCallback(true);
    return backup;
  }
  private static HashMap<ThreadLocal<Object>, Object> replayThreadLocalValues(@NonNull HashMap<ThreadLocal<Object>, Object> captured) {
    final HashMap<ThreadLocal<Object>, Object> backup = 
      new HashMap<ThreadLocal<Object>, Object>();
    for (Map.Entry<ThreadLocal<Object>, Object> entry : captured.entrySet()) {
      final ThreadLocal<Object> threadLocal = entry.getKey();
      backup.put(threadLocal, threadLocal.get());
      final Object value = entry.getValue();
      if (value == threadLocalClearMark) threadLocal.remove();
      else threadLocal.set(value);
    }
    return backup;
  }
  
  @NonNull
  public static Object clear() {
    final HashMap<TransmittableThreadLocal<Object>, Object> ttl2Value = 
      new HashMap<TransmittableThreadLocal<Object>, Object>();
    final HashMap<ThreadLocal<Object>, Object> threadLocal2Value = 
      new HashMap<ThreadLocal<Object>, Object>();
    for(Map.Entry<ThreadLocal<Object>,TtlCopier<Object>>entry:threadLocalHolder.entrySet()){
      final ThreadLocal<Object> threadLocal = entry.getKey();
      threadLocal2Value.put(threadLocal, threadLocalClearMark);
    }
    return replay(new Snapshot(ttl2Value, threadLocal2Value));
  }
  
  public static void restore(@NonNull Object backup) {
    final Snapshot backupSnapshot = (Snapshot) backup;
    restoreTtlValues(backupSnapshot.ttl2Value);
    restoreThreadLocalValues(backupSnapshot.threadLocal2Value);
  }
  private static void restoreTtlValues(@NonNull HashMap<TransmittableThreadLocal<Object>, Object> backup) {
    // 扩展点,调用TTL的afterExecute
    doExecuteCallback(false);
    for (final Iterator<TransmittableThreadLocal<Object>> iterator = holder.get().keySet().iterator(); iterator.hasNext(); ) {
      TransmittableThreadLocal<Object> threadLocal = iterator.next();
      if (!backup.containsKey(threadLocal)) {
        iterator.remove();
        threadLocal.superRemove();
      }
    }
    // 将本地变量恢复成备份版本
    setTtlValuesTo(backup);
  }
  private static void setTtlValuesTo(@NonNull HashMap<TransmittableThreadLocal<Object>, Object> ttlValues) {
    for (Map.Entry<TransmittableThreadLocal<Object>, Object> entry : ttlValues.entrySet()) {
      TransmittableThreadLocal<Object> threadLocal = entry.getKey();
      threadLocal.set(entry.getValue());
    }
  }
  private static void restoreThreadLocalValues(@NonNull HashMap<ThreadLocal<Object>, Object> backup) {
    for (Map.Entry<ThreadLocal<Object>, Object> entry : backup.entrySet()) {
      final ThreadLocal<Object> threadLocal = entry.getKey();
      threadLocal.set(entry.getValue());
    }
  }
  
  private static class Snapshot {
    final HashMap<TransmittableThreadLocal<Object>, Object> ttl2Value;
    final HashMap<ThreadLocal<Object>, Object> threadLocal2Value;
    private Snapshot(HashMap<TransmittableThreadLocal<Object>, Object> ttl2Value,
                     HashMap<ThreadLocal<Object>, Object> threadLocal2Value) {
      this.ttl2Value = ttl2Value;
      this.threadLocal2Value = threadLocal2Value;
    }
  }

进入TtlCallable#call()方法。

@Override
public V call() throws Exception {
  Object captured = capturedRef.get();
  if (captured == null || releaseTtlValueReferenceAfterCall &amp;&amp; 
      !capturedRef.compareAndSet(captured, null)) {
    throw new IllegalStateException("TTL value reference is released after call!");
  }
  // 调用replay方法将捕获到的当前线程的本地变量,传递给线程池线程的本地变量,
  // 并且获取到线程池线程覆盖之前的本地变量副本。
  Object backup = replay(captured);
  try {
    // 线程方法调用
    return callable.call();
  } finally {
    // 使用副本进行恢复。
    restore(backup);
  }
}

到这基本上线程池方式传递本地变量的核心代码已经大概看完了。总的来说在创建TtlCallable对象是,调用capture()方法捕获调用方的本地线程变量,在call()执行时,将捕获到的线程变量,替换到线程池所对应获取到的线程的本地变量中,并且在执行完成之后,将其本地变量恢复到调用之前。

总结

上述列举了4种方案,陈某这里推荐方案2和方案4,其中两种方案的缺点非常明显,实际开发中也是采用的方案2或者方案4

以上就是Spring Boot异步线程间数据传递的四种方式的详细内容,更多关于Spring Boot异步线程数据传递的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯