文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

FreeRTOS动态内存分配管理heap_4示例

2024-04-02 19:55

关注

heap_4.c 内存堆管理

heap_4也是用链表来管理,但是链表头用的是结构体,链表尾用的是指针,链表尾占用ucHeap内存

数据结构如下


typedef struct A_BLOCK_LINK
{
	struct A_BLOCK_LINK *pxNextFreeBlock;	
	size_t xBlockSize;						
} BlockLink_t;

头尾链表如下,注意pxEnd是指针


static BlockLink_t xStart, *pxEnd = NULL;

分配

void *pvPortMalloc( size_t xWantedSize )
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void *pvReturn = NULL;
	//挂起调度器,防止函数重入
	vTaskSuspendAll();
	{
		
		//pxEnd是NULL则是第一次调用,需要初始化堆
		if( pxEnd == NULL )
		{
			prvHeapInit();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
		
		//xBlockAllocatedBit = 0x8000_0000;
		//待分配的内存不能大于0x7FFF_FFFF,否则失败
		if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
		{
			
			if( xWantedSize > 0 )
			{
			    //加上管理结构体占用大小
				xWantedSize += xHeapStructSize;
				
				//xWantedSize大小进行字节对齐调整
				if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
				{
					
					xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
					configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
            //xWantedSize大于0且小于等于此时还剩字节数才能往下申请
			if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
			{
				
				//pxPreviousBlock指向头链表
				pxPreviousBlock = &xStart;
				//pxBlock指向头链表的下一个即第一个空闲块
				pxBlock = xStart.pxNextFreeBlock;
				//开始遍历找到第一个比xWantedSize大的空闲块
				while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
				{
				    //pxPreviousBlock保存空闲块的上一个
					pxPreviousBlock = pxBlock;
					pxBlock = pxBlock->pxNextFreeBlock;
				}
				
				//遍历完成pxBlock != pxEnd说明找到符合的空闲块
				if( pxBlock != pxEnd )
				{
					
					//返回给用户的内存地址要跳过管理结构体占用的内存大小
					pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
					
					//因为pxPreviousBlock->pxNextFreeBlock指向的空闲块被分配了,
					//所以要把pxPreviousBlock->pxNextFreeBlock指向的空闲块移除出去,
					//也就是pxPreviousBlock->pxNextFreeBlock指向pxBlock->pxNextFreeBlock
					//也就是跳过分配出去的那个块
					pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
					
					//这里判断,
					//如果将要分配出去的内存块大小xBlockSize比分配出去的还要大heapMINIMUM_BLOCK_SIZE(2倍管理结构体)
					//为了节约就把再分成2块,一块返回给用户,
					//一块构造一个新的空闲管理结构体后插入空闲链表
					if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
					{
						
						//注意这里xWantedSize是管理结构体和和真正需要字节数之和
						//所以是在pxBlock基础上偏移xWantedSize作为新的管理结构体
						pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
						configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );
						
						//pxNewBlockLink新的管理结构体大小
						//是待分配pxBlock->xBlockSize-xWantedSize
						pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
						//更新pxBlock->xBlockSize大小为xWantedSize
						pxBlock->xBlockSize = xWantedSize;
						
						//把新构造的空闲管理结构体按结构体地址升序插入到空闲链表
						prvInsertBlockIntoFreeList( pxNewBlockLink );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
					//还剩空闲字节数要减去分配出去的
					xFreeBytesRemaining -= pxBlock->xBlockSize;
					//更新历史最小剩余字节数
					if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
					{
						xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
					
					//xBlockSize最高位置1表示被这块内存被分配出去
					pxBlock->xBlockSize |= xBlockAllocatedBit;
					//所以管理结构体的next要指向NULL
					pxBlock->pxNextFreeBlock = NULL;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
		traceMALLOC( pvReturn, xWantedSize );
	}//解挂调度器
	( void ) xTaskResumeAll();
    //如果定义了分配失败钩子函数,分配失败则执行钩子函数
	#if( configUSE_MALLOC_FAILED_HOOK == 1 )
	{
		if( pvReturn == NULL )
		{
			extern void vApplicationMallocFailedHook( void );
			vApplicationMallocFailedHook();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	#endif
//返回给用户
	configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 );
	return pvReturn;
}

内存堆初始化

static void prvHeapInit( void )
{
BlockLink_t *pxFirstFreeBlock;
uint8_t *pucAlignedHeap;
size_t uxAddress;
size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;
	
	uxAddress = ( size_t ) ucHeap;
    //这里进行字节对齐
	if( ( uxAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
	{
		uxAddress += ( portBYTE_ALIGNMENT - 1 );
		uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
		//此时xTotalHeapSize表示管理的总内存字节数
		xTotalHeapSize -= uxAddress - ( size_t ) ucHeap;
	}
    //pucAlignedHeap指向对齐后首址
	pucAlignedHeap = ( uint8_t * ) uxAddress;
	
	//初始化头链表
	xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
	xStart.xBlockSize = ( size_t ) 0;

	
	//uxAddress此时指向管理内存最后
	uxAddress = ( ( size_t ) pucAlignedHeap ) + xTotalHeapSize;
	//退回一个BlockLink_t(字节对齐后)大小字节数
	uxAddress -= xHeapStructSize;
	//再次字节对齐
	uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
	//初始化尾链表
	pxEnd = ( void * ) uxAddress;
	pxEnd->xBlockSize = 0;
	pxEnd->pxNextFreeBlock = NULL;
	
	//初始化第一个空闲块
	pxFirstFreeBlock = ( void * ) pucAlignedHeap;
	//第一个空闲块字节数=uxAddress(此时值=pxEnd) - pxFirstFreeBlock(此时值=pucAlignedHeap)
	pxFirstFreeBlock->xBlockSize = uxAddress - ( size_t ) pxFirstFreeBlock;
	//第一个空闲块指向尾节点
	pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
	
	//更新历史还剩最少空闲字节数
	xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
	//更新实时还剩字节数
	xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
	
	//这里sizeof( size_t ) = 4,heapBITS_PER_BYTE=8,表示1字节有8bit
	//xBlockAllocatedBit = 1<<(4*8-1) = 0x8000_0000;
	//FreeRTOS用xBlockSize最高位来标记此内存块是否空闲
	//所以heap4最大只能管理0x7FFF_FFFF字节内存
	xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 );
}

初始化后的示意图如下
注意xEnd结构体占用的时堆内存

在这里插入图片描述

把新构造的结构体插入空闲链表

static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
{
BlockLink_t *pxIterator;
uint8_t *puc;
	
	//这里是根据内存块的地址大小来迭代寻找和pxBlockToInsert相邻的前一个空闲的内存块
	for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
	{
		
	}
	
	//这里判断pxBlockToInsert是否能与pxBlockToInsert相邻的前一个空闲的内存块合并
	puc = ( uint8_t * ) pxIterator;
	if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
	{   //这里做向前合并,xBlockSize相加
		pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
		//pxBlockToInsert指向pxIterator
		pxBlockToInsert = pxIterator;
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}
	
	//这里再判断是否能与后一个内存块合并
	puc = ( uint8_t * ) pxBlockToInsert;
	if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
	{   //这里做向后合并,如果要合并的后向不是pxEnd
		if( pxIterator->pxNextFreeBlock != pxEnd )
		{  //这里把后项合入到pxBlockToInsert
			
			pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
			//pxBlockToInsert的下一个指向后项指向的空闲块
			pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
		}
		else//如果后项是pxEnd就不能合并,指向pxEnd
		{
			pxBlockToInsert->pxNextFreeBlock = pxEnd;
		}
	}
	else//不相邻就只能插入链表
	{
		pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
	}
	
	//这里如果不等,说明没有做前向合并操作,
	//需要更新下链表插入
	if( pxIterator != pxBlockToInsert )
	{
		pxIterator->pxNextFreeBlock = pxBlockToInsert;
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}
}

释放

void vPortFree( void *pv )
{
uint8_t *puc = ( uint8_t * ) pv;
BlockLink_t *pxLink;
	if( pv != NULL )
	{
		
		//偏移回地址
		puc -= xHeapStructSize;
		
		pxLink = ( void * ) puc;
		
		//检查这个内存块是否是heap4之前分配的
		configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
		configASSERT( pxLink->pxNextFreeBlock == NULL );
		if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
		{
			if( pxLink->pxNextFreeBlock == NULL )
			{
				
				//把分配的xBlockSize最高位标记清除
				pxLink->xBlockSize &= ~xBlockAllocatedBit;
                //挂起调度器
				vTaskSuspendAll();
				{
					
				   //更新剩余内存数
					xFreeBytesRemaining += pxLink->xBlockSize;
					traceFREE( pv, pxLink->xBlockSize );
					//插入空闲内存链表
					prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
				}//解挂调度器
				( void ) xTaskResumeAll();
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
}

还剩空闲字节数

size_t xPortGetFreeHeapSize( void )
{
	return xFreeBytesRemaining;
}

历史剩余最小字节数

size_t xPortGetMinimumEverFreeHeapSize( void )
{
	return xMinimumEverFreeBytesRemaining;
}

适用范围、特点

heap4在heap2基础上加入了合并内存碎片算法,把相邻的内存碎片合并成一个更大的块、且xEnd结构体占用的是内存堆空间。
heap2的管理结构体链表是按照xBlockSize大小升序串起来,所以空闲块插入也是按照空闲块大小升序插入,而heap4管理结构体是按照空闲块管理结构体地址大小升序串起来,这样做是为了判断地址是否连续,若连续则能进行碎片合并,且用xBlockSize的最高为标记是否是已经分配的。

以上就是FreeRTOS动态内存分配管理heap_4示例的详细内容,更多关于FreeRTOS动态内存分配的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯