文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用python绘制折线图

2023-09-22 21:49

关注

前言

最近在完成一篇气象预报的论文,涉及到深度学习与气象绘图。我觉得还是有必要写一下我在这个过程中的一些经验总结,借此机会与各位同道交流。

一、基础命令

在我们使用深度学习时,肯定会用到绘图命令,绘制loss与val_loss等等,以此查看模型的效果。

plt.plot(x,y,lw=,ls=,c=, alpha=, label=)

x:x坐标的数据

y:y坐标的数据

lw:指定线条宽度

ls:指定线条样式,ls='-'为实线,ls='--'为虚断线,ls='-.'为点虚线,ls=':'为虚线

c:指定线条颜色,c='r'为红色,c='k'为黑色,c='y'为黄色

alpha:指定线条透明度,值越小越透明

label:指定线条的含义

代码示例:

#导入库import matplotlib.pyplot as pltimport numpy as np#设定画布。dpi越大图越清晰,绘图时间越久fig=plt.figure(figsize=(4, 4), dpi=300)#导入数据x=list(np.arange(1, 21))y=np.random.randn(20)#绘图命令plt.plot(x, y, lw=4, ls='-', c='b', alpha=0.1)plt.plot()#show出图形plt.show()#保存图片fig.savefig("画布")

绘图结果:

二、根据Excel数据绘图

在python中,有一个专门进行数据处理的库包叫做pandas

# 导包import pandas as pd# 读取excel文件pd.read_excel('文件所在路径')

提取excel中某一列数据:filename['列名'],返回值是一个列表。

取得excel中我们想要的数据后,下一步就是绘制:

...# 第一步绘制画布fig=plt.figure(figsize=(7, 4), dpi=200)# 第二步添加绘图区.# subplot命令是在画布上添加一个绘图区,括号里的内容转述为汉字为:“创建一个一行一列的绘图区(一行一列就只有一个绘图区),ax1是第一个绘图区,facecolor用来设置画布背景颜色,默认为白色ax1 = fig.add_subplot(111, facecolor='green')  

如果要创建一个两行两列(或者其他维度)的子图区,分别为ax1,ax2,ax3,ax4:

ax1=fig.add_subplot(221)ax2=fig.add_subplot(222)ax3=fig.add_subplot(223)ax4=fig.add_subplot(224)

效果如下:

三、合并一幅图的x(或y)坐标轴以及添加图例legend()

实现上图的效果,重点在于ax2=ax1.twinx() ,ax2和ax1共用x轴,但是ax1使用左侧y轴,ax2使用右侧y轴:

fig=plt.figure(figsize=(7,4),dpi=200)        # 新建画布ax1=fig.add_subplot(111)                     # 设置绘图区line1,=ax1.plot(times,temps,'r:',lw=1,label='气温')    # 创建折线bar1 =ax1.bar(times,rains,color='b',label='降水量')    # 创建条状ax2=ax1.twinx()# 设置共用x轴line2,=ax2.plot(times,pressures,'k-',lw=1.2,label='气压')# legend用来设置图例,还可以添加参数ncol='',该参数用来设置图例的列数,用于对齐plt.legend((line1,bar1,line2),('气温','降水量','气压'),loc='center left',frameon=False,framealpha=0.5)       ax1.set_xlabel('时间 \ h')                # 设置x轴ax1.set_ylabel('气温(℃)\降水量(mm)')  # 设置左侧y轴ax2.set_ylabel('气压(hPa)')             # 设置右侧y轴plt.title("----")                         # 设置图的名称plt.show()

四、调节字体样式

通过字典的方式调节,在字典中存储需要修改的的参数名称和指定值大小,还可以存放更多参数:

font={'size':30,'color':'red'}ax.set_xlabel('--',fontdict=font)ax.set_ylabel('--',fontdict=font)

五、绘制网格线

ax.grid()  # 开启x和y轴的网格ax.grid(ls='--')   # 开启x和y轴的虚线网格ax.grid(True,axis='x')   # 开启x轴的网格ax.grid(True,axis='y')   # 开启y轴的网格

六、合并两幅图的坐标轴

按照以下方式设置画布:

fig,((ax1),(ax2))=plt.subplots(2,1,figsize=(5,5),dpi=200,sharex='all')fig.subplots_adjust(hspace=0)

七、不常用的函数

1.ax.set_ylim()、ax.set_xlim()

在共享x(y)轴时,两边y(x)轴的零刻度是不一致的,xlim和ylim用来设置坐标轴的范围。

2.set_minor_locator()、set_major_locator()

set_minor_locator用来在主刻度的基础上设置或修改副刻度的大小,set_major_locator用来修改主刻度的单位显示。使用前,必须引入库包:

import matplotlib.ticker as ticker

举例说明:

(1)此处设定副刻度为0.1个单位。

ax1.yaxis.set_minor_locator(ticker.MultipleLocator(0.1))

(2) 将右侧主刻度设置为每10个单位显示。

ax2.yaxis.set_major_locator(ticker.MultipleLocator(10))

来源地址:https://blog.csdn.net/linxi4165/article/details/126086680

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯