文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C语言关于二叉树中堆的创建和使用整理

2022-11-13 14:08

关注

一、堆的创建

下面我们先看一段代码:

void HeapSort(int* a, int size)
{
	// 建小(da)堆
	HP hp;
	HeapInit(&hp);
	// O(N*logN)
	for (int i = 0; i < size; ++i)
	{
		HeapPush(&hp, a[i]);// O(N)空间复杂度
	}
	HeapPrint(&hp);
	// O(N*logN)  排序
	size_t j = 0;
	while (!HeapEmpty(&hp))
	{
		a[j] = HeapTop(&hp);
		j++;
		HeapPop(&hp);
	}
	HeapDestroy(&hp);
}

这是一段堆排序的算法,从代码中我们可以看出,当传入一个数组时,我们申请了额外一块空间来创建堆,这时空间复杂度为O(N),这显然存在缺陷,需要改进!

下面我们介绍两种调整算法来创建堆,就在原数组空间上进行堆的创建,空间复杂度为O(1)!

1、向上调整算法建堆

for (int i = 1; i < n; i++)
	{
		AdjustUp(a, i);
	}

代码解释:在数组中从第二个元素出发,在逻辑上依次进行向上调整。

向上调整建堆方式对于建大堆还是小堆关键在于AdjustUp函数。

void AdjustUp(HPDataType* a, HPDataType child){
	assert(a);
	//int child = php->size - 1;
	int parent = (child - 1) / 2;
	while (a[parent] > a[child] && parent >= 0)//小堆!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	{
		Swap(&a[parent], &a[child]);
		child = parent;
		parent = (child - 1) / 2;
	}
}
while (a[parent] < a[child] && parent >= 0)//大堆!!!!!!!!!!!!!!!!!!!
	{
		Swap(&a[parent], &a[child]);
		child = parent;
		parent = (child - 1) / 2;
	}

2、向下调整算法建堆

注意:向下调整时,必须保证子树都是堆,所以从最后一个非叶子节点(最后一个节点的父亲)开始依次进行向下调整算法!

for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}

代码解释:在数组中从第(n - 1 - 1) / 2个元素出发,在逻辑上依次进行向下调整。

向下调整建堆方式对于建大堆还是小堆关键在于AdjustDown函数。

建小堆:

void AdjustDown(HPDataType* a, size_t size, size_t root){
	size_t parent = root;
	size_t child = parent * 2 + 1;
	while (child < size)
	{
		//选出左右孩子小的那一个
		if (child + 1 < size && a[child + 1] < a[child])
		{
			child++;
		}
		//向下调整,如果孩子小于父亲,则交换,继续向下调整
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

建大堆:

while (child < size)
	{
		//选出左右孩子大的那一个
		if (child + 1 < size && a[child + 1] > a[child])
		{
			child++;
		}
		//向下调整,如果孩子da于父亲,则交换,继续向下调整
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}

两种创建方式的区别:

主要在于时间复杂度上:

所以常选用向下调整算法!

二、堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1、建堆

2、利用堆删除思想来进行排序

建堆和堆删除都用到了向下调整算法,因此掌握了向下调整,就可以完成堆排序!

void HeapSort(int * a, int n){
	assert(a);
	//向上调整--建堆   向上建堆的复杂度比向下的高
	
	//向下调整,必须保证子树都是堆,所以从后往前
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);//这里的函数是对应上文的建小堆的AdjustDown函数
	}//小堆--对应降序排列
	
	size_t end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);//这里的函数是对应上文的建小堆的AdjustDown函数
		--end;
	}
}
int main()
{
	//TestHeap();
	int a[] = { 4, 2, 7, 8, 5, 1, 0, 6 };
	HeapSort(a, sizeof(a) / sizeof(int));

	for (int i = 0; i < sizeof(a) / sizeof(int); ++i)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
	system("pause");
	return 0;
}

8 7 6 5 4 2 1 0//降序排列
请按任意键继续. . .

到此这篇关于C语言关于二叉树中堆的创建和使用整理的文章就介绍到这了,更多相关C语言堆的创建使用内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯