文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Java编写Mapreduce程序过程浅析

2023-05-20 05:40

关注

一个Maprduce程序主要包括三部分:Mapper类、Reducer类、执行类。

Maven项目下所需依赖

<dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.3.0</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.30</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>3.8.2</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>compile</scope>
        </dependency>
    </dependencies>

数据类型

一、Mapper类

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;
import java.io.IOException;
public class WordCountMapper extends Mapper<LongWritable,Text,Text,LongWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //如果当前数据不为空
        if (value!=null){
            //获取每一行的数据
            String line = value.toString();
            //将一行数据根据空格分开
//            String[] words = line.split(" ");
            String[] words = StringUtils.split(line,' ');//hadoop的StringUtils.split方法对大数据来说比Java自带的拥有更好的性能
            //输出键值对
            for (String word : words) {
                context.write(new Text(word),new LongWritable(1));
            }
        }
    }
}

二、Reducer类

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountReducer extends Reducer<Text, LongWritable,Text,LongWritable> {
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        //累加单词的数量
        long sum = 0;
        //遍历单词计数数组,将值累加到sum中
        for (LongWritable value : values) {
            sum += value.get();
        }
        //输出每次最终的计数结果
        context.write(key,new LongWritable(sum));
    }
}

三、执行类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class WordCountRunner extends Configured implements Tool {
    public static void main(String[] args) throws Exception {
        ToolRunner.run(new Configuration(),new WordCountRunner(),args);
    }
    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCountRunner.class);
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        //设置统计文件输入的路径,将命令行的第一个参数作为输入文件的路径
        //读取maven项目下resources目录的文档    
        String path = getClass().getResource("/words.txt").getPath();
        FileInputFormat.setInputPaths(job,path);
        //设置结果数据存放路径,将命令行的第二个参数作为数据的输出路径
        //输出目录必须不存在!!!
        FileOutputFormat.setOutputPath(job,new Path("./output"));
        return job.waitForCompletion(true) ? 0 : 1;
    }
}

程序执行结果

到此这篇关于Java编写Mapreduce程序过程浅析的文章就介绍到这了,更多相关Java编写Mapreduce内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯