文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python如何实现炫酷的动态图

2023-06-28 06:28

关注

这篇文章主要为大家展示了“Python如何实现炫酷的动态图”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python如何实现炫酷的动态图”这篇文章吧。

启动

如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装:

pip install plotly

安装完成后,就开始使用吧!

动画

在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly 动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:

Python如何实现炫酷的动态图

代码如下:

import plotly.express as pxfrom vega_datasets import datadf = data.disasters()df = df[df.Year > 1990]fig = px.bar(df,             y="Entity",             x="Deaths",             animation_frame="Year",             orientation='h',             range_x=[0, df.Deaths.max()],             color="Entity")# improve aesthetics (size, grids etc.)fig.update_layout(width=1000,                  height=800,                  xaxis_showgrid=False,                  yaxis_showgrid=False,                  paper_bgcolor='rgba(0,0,0,0)',                  plot_bgcolor='rgba(0,0,0,0)',                  title_text='Evolution of Natural Disasters',                  showlegend=False)fig.update_xaxes(title_text='Number of Deaths')fig.update_yaxes(title_text='')fig.show()

只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:

import plotly.express as pxdf = px.data.gapminder()fig = px.scatter(    df,    x="gdpPercap",    y="lifeExp",    animation_frame="year",    size="pop",    color="continent",    hover_name="country",    log_x=True,    size_max=55,    range_x=[100, 100000],    range_y=[25, 90],    #   color_continuous_scale=px.colors.sequential.Emrld)fig.update_layout(width=1000,                  height=800,                  xaxis_showgrid=False,                  yaxis_showgrid=False,                  paper_bgcolor='rgba(0,0,0,0)',                  plot_bgcolor='rgba(0,0,0,0)')

太阳图

太阳图(sunburst chart)是一种可视化 group by 语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。

假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重 group by 语句可以通过可视化来更有效地展示。

Python如何实现炫酷的动态图

这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的 parents 参数)并分配对应的值即可,这在我们案例中即为 group by 语句的输出。

import plotly.graph_objects as goimport plotly.express as pximport numpy as npimport pandas as pddf = px.data.tips()fig = go.Figure(go.Sunburst(    labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],    parents=["", "", "Female", "Female", 'Male', 'Male'],    values=np.append(        df.groupby('sex').tip.mean().values,        df.groupby(['sex', 'time']).tip.mean().values),    marker=dict(colors=px.colors.sequential.Emrld)),                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',                                 plot_bgcolor='rgba(0,0,0,0)'))fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),                  title_text='Tipping Habbits Per Gender, Time and Day')fig.show()

现在我们向这个层次结构再添加一层:

Python如何实现炫酷的动态图

为此,我们再添加另一个涉及三个类别变量的 group by 语句的值。

import plotly.graph_objects as goimport plotly.express as pximport pandas as pdimport numpy as npdf = px.data.tips()fig = go.Figure(go.Sunburst(labels=[    "Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',    'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri  ', 'Sat  ', 'Sun  ', 'Fri   ', 'Thu   '],                            parents=[                                "", "", "Female", "Female", 'Male', 'Male',                                'Dinner', 'Dinner', 'Dinner', 'Dinner',                                'Lunch', 'Lunch', 'Dinner ', 'Dinner ',                                'Dinner ', 'Lunch ', 'Lunch '                            ],                            values=np.append(                                np.append(                                    df.groupby('sex').tip.mean().values,                                    df.groupby(['sex',                                                'time']).tip.mean().values,                                ),                                df.groupby(['sex', 'time',                                            'day']).tip.mean().values),                            marker=dict(colors=px.colors.sequential.Emrld)),                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',                                 plot_bgcolor='rgba(0,0,0,0)'))fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),                  title_text='Tipping Habbits Per Gender, Time and Day')fig.show()

平行类别

另一种探索类别变量之间关系的方法是以下这种流程图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。

Python如何实现炫酷的动态图

代码如下:

import plotly.express as pxfrom vega_datasets import dataimport pandas as pddf = data.movies()df = df.dropna()df['Genre_id'] = df.Major_Genre.factorize()[0]fig = px.parallel_categories(    df,    dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],    color="Genre_id",    color_continuous_scale=px.colors.sequential.Emrld,)fig.show()

平行坐标图

平行坐标图是上面的图表的连续版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。

Python如何实现炫酷的动态图

代码如下:

 import plotly.express as pxfrom vega_datasets import dataimport pandas as pddf = data.movies()df = df.dropna()df['Genre_id'] = df.Major_Genre.factorize()[0]fig = px.parallel_coordinates(    df,    dimensions=[        'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',        'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'    ],    color='IMDB_Rating',    color_continuous_scale=px.colors.sequential.Emrld)fig.show()

量表图和指示器

Python如何实现炫酷的动态图

量表图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。

指示器在业务和咨询中非常有用。它们可以通过文字记号来补充视觉效果,吸引观众的注意力并展现你的增长指标。

import plotly.graph_objects as gofig = go.Figure(go.Indicator(    domain = {'x': [0, 1], 'y': [0, 1]},    value = 4.3,    mode = "gauge+number+delta",    title = {'text': "Success Metric"},    delta = {'reference': 3.9},    gauge = {'bar': {'color': "lightgreen"},        'axis': {'range': [None, 5]},             'steps' : [                 {'range': [0, 2.5], 'color': "lightgray"},                 {'range': [2.5, 4], 'color': "gray"}],          }))fig.show()

以上是“Python如何实现炫酷的动态图”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注编程网行业资讯频道!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯