文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python中k-means和k-means++原理是什么及怎么实现

2023-06-30 13:08

关注

这篇文章主要介绍“python中k-means和k-means++原理是什么及怎么实现”,在日常操作中,相信很多人在python中k-means和k-means++原理是什么及怎么实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python中k-means和k-means++原理是什么及怎么实现”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

前言

k-means算法是无监督的聚类算法,实现起来较为简单,k-means++可以理解为k-means的增强版,在初始化中心点的方式上比k-means更友好。

k-means原理

k-means的实现步骤如下:

优点:

缺点:

k-means++原理

k-means++是k-means的增强版,它初始选取的聚类中心点尽可能的分散开来,这样可以有效减少迭代次数,加快运算速度,实现步骤如下:

这里不得不说明一点,有的文献中把与已选择的聚类中心最大距离的点选作下一个中心点,这个说法是不太准确的,准的说是与已选择的聚类中心最大距离的点被选作下一个中心点的概率最大,但不一定就是改点,因为总是取最大也不太好(遇到特殊数据,比如有一个点离某个聚类所有点都很远)。

一般初始化部分,始终要给些随机。因为数据是随机的。

尽管计算初始点时花费了额外的时间,但是在迭代过程中,k-mean 本身能快速收敛,因此算法实际上降低了计算时间。

现在重点是利用轮盘法的方式选出下一个聚类中心,我们以一个例子说明K-means++是如何选取初始聚类中心的。

假如数据集中有8个样本,分布分布以及对应序号如下图所示:

python中k-means和k-means++原理是什么及怎么实现

我们先用 k-means++的步骤1选择6号点作为第一个聚类中心,然后进行第二步,计算每个样本点到已选择的聚类中心的距离D(X),如下所示:

python中k-means和k-means++原理是什么及怎么实现

然后执行 k-means++的第三步:利用轮盘法的方式选出下一个聚类中心,方法是随机产生出一个0~1之间的随机数,判断它属于哪个区间,那么该区间对应的序号就是被选择出来的第二个聚类中心了

在上图1号点区间为[0,0.2),2号点的区间为[0.2, 0.525),4号点的区间为[0.65,0.9)

从上表可以直观的看到,1号,2号,3号,4号总的概率之和为0.9,这4个点正好是离第一个初始聚类中心(即6号点)较远的四个点,因此选取的第二个聚类中心大概率会落在这4个点中的一个,其中2号点被选作为下一个聚类中心的概率最大。

k-means及k-means++代码实现

这里选择的中心点是样本的特征(不是索引),这样做是为了方便计算,选择的聚类点(中心点周围的点)是样本的索引。

k-means实现

# 定义欧式距离import numpy as npdef get_distance(x1, x2):    return np.sqrt(np.sum(np.square(x1-x2)))
import random# 定义中心初始化函数,中心点选择的是样本特征def center_init(k, X):    n_samples, n_features = X.shape    centers = np.zeros((k, n_features))    selected_centers_index = []    for i in range(k):        # 每一次循环随机选择一个类别中心,判断不让centers重复        sel_index = random.choice(list(set(range(n_samples))-set(selected_centers_index)))        centers[i] = X[sel_index]        selected_centers_index.append(sel_index)    return centers
# 判断一个样本点离哪个中心点近, 返回的是该中心点的索引## 比如有三个中心点,返回的是0,1,2def closest_center(sample, centers):    closest_i = 0    closest_dist = float('inf')    for i, c in enumerate(centers):        # 根据欧式距离判断,选择最小距离的中心点所属类别        distance = get_distance(sample, c)        if distance < closest_dist:            closest_i = i            closest_dist = distance    return closest_i
# 定义构建聚类的过程# 每一个聚类存的内容是样本的索引,即对样本索引进行聚类,方便操作def create_clusters(centers, k, X):    clusters = [[] for _ in range(k)]    for sample_i, sample in enumerate(X):        # 将样本划分到最近的类别区域        center_i = closest_center(sample, centers)        # 存放样本的索引        clusters[center_i].append(sample_i)    return clusters
# 根据上一步聚类结果计算新的中心点def calculate_new_centers(clusters, k, X):    n_samples, n_features = X.shape    centers = np.zeros((k, n_features))    # 以当前每个类样本的均值为新的中心点    for i, cluster in enumerate(clusters):  # cluster为分类后每一类的索引        new_center = np.mean(X[cluster], axis=0) # 按列求平均值        centers[i] = new_center    return centers
# 获取每个样本所属的聚类类别def get_cluster_labels(clusters, X):    y_pred = np.zeros(np.shape(X)[0])    for cluster_i, cluster in enumerate(clusters):        for sample_i in cluster:            y_pred[sample_i] = cluster_i            #print('把样本{}归到{}类'.format(sample_i,cluster_i))    return y_pred
# 根据上述各流程定义kmeans算法流程def Mykmeans(X, k, max_iterations,init):    # 1.初始化中心点    if init == 'kmeans':        centers = center_init(k, X)    else: centers = get_kmeansplus_centers(k, X)    # 遍历迭代求解    for _ in range(max_iterations):        # 2.根据当前中心点进行聚类        clusters = create_clusters(centers, k, X)        # 保存当前中心点        pre_centers = centers        # 3.根据聚类结果计算新的中心点        new_centers = calculate_new_centers(clusters, k, X)        # 4.设定收敛条件为中心点是否发生变化        diff = new_centers - pre_centers        # 说明中心点没有变化,停止更新        if diff.sum() == 0:            break    # 返回最终的聚类标签    return get_cluster_labels(clusters, X)
# 测试执行X = np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])# 设定聚类类别为2个,最大迭代次数为10次labels = Mykmeans(X, k = 2, max_iterations = 10,init = 'kmeans')# 打印每个样本所属的类别标签print("最后分类结果",labels)## 输出为  [1. 1. 1. 0. 0.]
# 使用sklearn验证from sklearn.cluster import KMeansX = np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])kmeans = KMeans(n_clusters=2,init = 'random').fit(X)# 由于center的随机性,结果可能不一样print(kmeans.labels_)

k-means++实现

## 得到kmean++中心点def get_kmeansplus_centers(k, X):    n_samples, n_features = X.shape    init_one_center_i = np.random.choice(range(n_samples))    centers = []    centers.append(X[init_one_center_i])    dists = [ 0 for _ in range(n_samples)]    # 执行    for _ in range(k-1):        total = 0        for sample_i,sample in enumerate(X):            # 得到最短距离            closet_i = closest_center(sample,centers)            d = get_distance(X[closet_i],sample)            dists[sample_i] = d            total += d        total = total * np.random.random()        for sample_i,d in enumerate(dists): # 轮盘法选出下一个聚类中心            total -= d            if total > 0:                continue            # 选取新的中心点            centers.append(X[sample_i])            break    return centers
X = np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])# 设定聚类类别为2个,最大迭代次数为10次labels = Mykmeans(X, k = 2, max_iterations = 10,init = 'kmeans++')print("最后分类结果",labels)## 输出为  [1. 1. 1. 0. 0.]
# 使用sklearn验证X = np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])kmeans = KMeans(n_clusters=2,init='k-means++').fit(X)print(kmeans.labels_)

到此,关于“python中k-means和k-means++原理是什么及怎么实现”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯