文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Scipy稀疏矩阵bsr_array如何使用

2023-07-05 05:06

关注

本篇内容主要讲解“Scipy稀疏矩阵bsr_array如何使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Scipy稀疏矩阵bsr_array如何使用”吧!

基本原理

bsr,即Block Sparse Row,bsr_array即块稀疏行矩阵,顾名思义就是将稀疏矩阵分割成一个个非0的子块,然后对这些子块进行存储。通过输入维度,可以创建一个空的bsr数组,但bsr格式并不可见,需要通过toarray转为数组,才能一窥全貌。

from scipy.sparse import bsr_arrayimport numpy as npimport sysbsr = bsr_array((100, 200), dtype=np.int8)sys.getsizeof(bsr)      # 48bsr_arr = bsr.toarray() # 转为数组sys.getsizeof(bsr_arr)  # 20120

egtsizeof可查看数据占用的内存,其中bsr占用48byte,转为数组之后占据20k,这就是稀疏矩阵存在的价值。

当然,全零的数组就直接叫全零数组得了,直接存个行列数比bsr还省事儿,接下来构造一个矩阵

from numpy.random import randint, randtmp = np.zeros([200,200])for i in range(30):    x, y = randint(195, size=(2))    tmp[x:x+5, y:y+5]=rand(5,5)print(tmp.size)            # 40000bsr = bsr_array(tmp, blocksize=(5,5))    print(bsr.data.size)       # 2850print(bsr.indptr.size)     # 41print(bsr.indices.size)    # 114print(tmp.size)

bsr.data是bsr中存放的矩阵块;bsr.indices为这些矩阵块对应的列号数组;bsr.indptr为索引的行分割数组;这些零零碎碎加在一起也只有3005个数,和40k的tmp相比,可以说压缩效率非常高了。

通过data, indptr和indices,可以将bsr复原为矩阵。首先,列号和数据是一一对应的;其次indptr对索引和数据按行分割。在本例中,indptr的值为0, 2, 6, 8…,则data[0:2]存放在第0行,对应的列号为indices[0:2];data[2:6]存放在第1行,对应的列号为indices[2:6],以此类推。

初始化

bsr_array共有5种初始化方案:

前四种方法均有参数blocksize,为块尺寸;后两种方法均有参数shape,为稀疏矩阵的维度。

从原理上来说,通过data, indices, indptr来创建的bsr数组,属于"原生"的bsr数组,其创建规则就是前文提到的复原规则。

内置方法

稀疏数组在计算上并不便捷,所以bsr_array中内置了下列函数,可以高效地完成计算。



函数expm1, log1p, sqrt, pow, sign
三角函数sin, tan, arcsin, arctan, deg2rad, rad2deg
双曲函数sinh, tanh, arcsinh, arctanh
索引getcol, getrow, nonzero, argmax, argmin, max, min
舍入ceil, floor, trunc
变换conj, conjugate, getH
统计count_nonzero, getnnz, mean, sum
矩阵diagonal, trace
获取属性get_shape, getformat
计算比较multiply, dot, maximum, minimum
转换asformat, asfptype, astype, toarray, todense
转换tobsr, tocoo, tocsc, tocsr, todia, todok, tolil
更改维度set_shape, reshape, resize, transpose
排序sort_indices, sorted_indices
移除元素eliminate_zeros, prune, sum_duplicates
其他copy, check_format, getmaxprint, rint, setdiag

到此,相信大家对“Scipy稀疏矩阵bsr_array如何使用”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯