文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python稀疏矩阵scipy.sparse包使用详解

2023-02-16 12:01

关注

1. 前言

数组和矩阵是数值计算的基础元素。目前为止,我们都是使用NumPy的ndarray数据结构来表示数组,这是一种同构的容器,用于存储数组的所有元素。

有一种特殊情况,矩阵的大部分元素都为零,这种矩阵被称为稀疏矩阵。对于稀疏矩阵,将所有零保存在计算机内存中的效率很低,更合适的方法是只保存非零元素以及位置信息。于是SciPy应运而生,为稀疏矩阵的表示及其线性代数运算提供了丰富易用的接口。

2. 导入包

SciPy中提供了稀疏矩阵模块scipy.sparse,为稀疏矩阵的表示及其线性代数运算提供了丰富易用的接口。

import scipy.sparse as sp
import scipy.sparse.linalg
import scipy.linalg as la

3. 稀疏矩阵总览

There are seven available sparse matrix types:
    1. csc_matrix: Compressed Sparse Column format
    2. csr_matrix: Compressed Sparse Row format
    3. bsr_matrix: Block Sparse Row format
    4. lil_matrix: List of Lists format
    5. dok_matrix: Dictionary of Keys format
    6. coo_matrix: COOrdinate format (aka IJV, triplet format)
    7. dia_matrix: DIAgonal format

注意:

4. 稀疏矩阵详细介绍

4.1 coo_matrix

coo_matrix是最简单的存储方式。采用三个数组row、col和data保存非零元素的行下标,列下标与值。这三个数组的长度相同一般来说,coo_matrix主要用来创建矩阵,因为coo_matrix无法对矩阵的元素进行增删改等操作,一旦创建之后,除了将之转换成其它格式的矩阵,几乎无法对其做任何操作和矩阵运算。

1

为了创建sp.coo_matrix对象,需要创建非零值、行索引以及列索引的列表或数组,并将其传递给生成函数sp.coo_matrix。

values = [1, 2, 3, 4]
rows = [0, 1, 2, 3]
cols = [1, 3, 2, 0]
A = sp.coo_matrix((values, (rows, cols)), shape=[4, 4])
A

2

>>> A.toarray()
array([[1, 0, 0, 0],
       [0, 0, 0, 2],
       [0, 0, 3, 0],
       [4, 0, 0, 0]])
>>> type(A)
<class 'scipy.sparse.coo.coo_matrix'>
>>> type(A.toarray())
<class 'numpy.ndarray'>

SciPy的sparse模块中稀疏矩阵的属性大部分派生自NumPy的ndarray对象,同时也包括nnz(非零元素数目)和data(非零值)等属性。

A.shape, A.size, A.dtype, A.ndim

3

A.nnz, A.data

在这里插入图片描述

对于sp.coo_matrix对象,还可以使用row和col属性来访问底层的行列坐标数组。

A.row, A.col

4.2 dok_matrix

dok_matrix适用的场景是逐渐添加矩阵的元素。dok_matrix的策略是采用字典来记录矩阵中不为0的元素。所以字典的key存的是记录元素的位置信息的元祖,value是记录元素的具体值。

>>> S = sparse.dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
    	for j in range(5):
        	S[i,j] = i+j    # 更新元素
>>> S.toarray()
[[0. 1. 2. 3. 4.]
 [1. 2. 3. 4. 5.]
 [2. 3. 4. 5. 6.]
 [3. 4. 5. 6. 7.]
 [4. 5. 6. 7. 8.]]

优点:对于递增的构建稀疏矩阵很高效,比如定义该矩阵后,想进行每行每列更新值,可用该矩阵。当访问某个单元,只需要O(1)

缺点:不允许重复索引(coo中适用),但可以很高效的转换成coo后进行重复索引。

4.3 lil_matrix

lil_matrix适用的场景也是逐渐添加矩阵的元素。与dok不同,lil_matrix则是使用两个列表存储非0元素。data保存每行中的非零元素,rows保存非零元素所在的列。这种格式也很适合逐个添加元素,并且能快速获取行相关的数据。

>>> l = sparse.lil_matrix((4, 4))
>>> l[1, 1] = 1
>>> l[1, 3] =2
>>> l[2, 3] = 3
>>> l.toarray()
array([[0., 0., 0., 0.],
       [0., 1., 0., 2.],
       [0., 0., 0., 3.],
       [0., 0., 0., 0.]])
>>> l.data
array([list([]), list([1.0, 2.0]), list([3.0]), list([])], dtype=object)
>>> l.rows
array([list([]), list([1, 3]), list([3]), list([])], dtype=object)

优点:适合递增的构建成矩阵、转换成其它存储方式很高效、支持灵活的切片。

缺点:当矩阵很大时,考虑用coo、算术操作,列切片,矩阵向量内积操作慢。

4.4 dia_matrix

如果稀疏矩阵仅包含非0元素的对角线,则对角存储格式(DIA)可以减少非0元素定位的信息量。这种存储格式对有限元素或者有限差分离散化的矩阵尤其有效。dia_matrix通过两个数组确定: data和offsets。其中data对角线元素的值;offsets:第i个offsets是当前第i个对角线和主对角线的距离。data[k:]存储了offsets[k]对应的对角线的全部元素。例子如下:

在这里插入图片描述

>>> data = np.array([[1, 2, 3, 4], [5, 6, 0, 0], [0, 7, 8, 9]])
>>> offsets = np.array([0, -2, 1])
>>> sparse.dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 7, 0, 0],
       [0, 2, 8, 0],
       [5, 0, 3, 9],
       [0, 6, 0, 4]])

注意:offsets[0]=0表示第0个对角线与主对角线的距离为0,表示第0个对角线就是主对角线,data[0]就是第0个对角线的值。offsets[1]=-2表示第1个对角线与主对角线距离为-2,此时该对角线在主对角线的左下方,对角线上数值的数量为4-2=2,对应的值为data[1, :2+1],此时data[1, 3:]为无效的值,在构造对角稀疏矩阵时不起作用。offsets[2]=1表示第2个对角线与主对角线距离为1,此时该对角线在主对角线的右上方,对角线上数值的数量为4-1=3,对应的值为data[2, 1:],此时data[2, :1]为无效的值,在构造对角稀疏矩阵时不起作用。

4.5 csc_matrix & csr_matrix

csr_matrix是按行对矩阵进行压缩的,csc_matrix则是按列对矩阵进行压缩的。通过row_offsets,column_indices,data来确定矩阵。column_indices,data与coo格式的列索引与数值的含义完全相同,row_offsets表示元素的行偏移量。例子如下,

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

注意:indices和data分别表示列索引和数据,第 i 行的列索引存储在indices[indptr[i]:indptr[i+1]] 中,对应的值为data[indptr[i]:indptr[i+1]]。即第0行的列索引为indices[0:2]=[0,2],值为data[0:2]=[1,2];第1行的列索引为indices[2:3]=[2],值为data[2:3]=[3]…

CSR格式常用于读入数据后进行稀疏矩阵计算。

两者的优缺点互反:

4.6 bsr_matrix

基于行的块压缩,通过row_offsets,column_indices,data来确定矩阵。与csr相比,只是data中的元数据由0维的数变为了一个矩阵(块),其余完全相同。

>>> indptr = np.array([0,2,3,6])
>>> indices = np.array([0,2,2,0,1,2])
>>> data = np.array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
>>> bsr_matrix((data,indices,indptr), shape=(6,6)).todense()
matrix([[1, 1, 0, 0, 2, 2],
        [1, 1, 0, 0, 2, 2],
        [0, 0, 0, 0, 3, 3],
        [0, 0, 0, 0, 3, 3],
        [4, 4, 5, 5, 6, 6],
        [4, 4, 5, 5, 6, 6]])

优点:很类似于csr,更适合于矩阵的某些子矩阵很多值,在某些情况下比csr和csc计算更高效。

5. 稀疏矩阵的存取

5.1 用save_npz保存单个稀疏矩阵

>>> scipy.sparse.save_npz('sparse_matrix.npz', sparse_matrix)
>>> sparse_matrix = scipy.sparse.load_npz('sparse_matrix.npz')

稀疏矩阵存储大小比较:

a = np.arange(100000).reshape(1000,100)
a[10: 300] = 0
b = sparse.csr_matrix(a)
# 稀疏矩阵压缩存储到npz文件
sparse.save_npz('b_compressed.npz', b, True)  # 文件大小:100KB
# 稀疏矩阵不压缩存储到npz文件
sparse.save_npz('b_uncompressed.npz', b, False)  # 文件大小:560KB
# 存储到普通的npy文件
np.save('a.npy', a)  # 文件大小:391KB
# 存储到压缩的npz文件
np.savez_compressed('a_compressed.npz', a=a)  # 文件大小:97KB

对于存储到npz文件中的CSR格式的稀疏矩阵,内容为:

data.npy
format.npy
indices.npy
indptr.npy
shape.npy

6. 总结

加载数据文件时使用coo_matrix快速构建稀疏矩阵,然后调用to_csr()、to_csc()、to_dense()把它转换成CSR或稠密矩阵(numpy.matrix)。

coo_matrix格式常用于从文件中进行稀疏矩阵的读写,而csr_matrix格式常用于读入数据后进行稀疏矩阵计算。

7. 参考

【1】https://blog.csdn.net/winycg/article/details/80967112
【2】https://blog.csdn.net/vor234/article/details/124935384

到此这篇关于Python稀疏矩阵scipy.sparse包使用详解的文章就介绍到这了,更多相关Python稀疏矩阵内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯