文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C++数据结构之堆详解

2024-04-02 19:55

关注

堆的概念

堆(heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象,即是一种顺序储存结构的完全二叉树。

提示:完全二叉树

完全二叉树:对一棵深度为k、有n个结点二叉树编号后,各节点的编号与深度为k的满二叉树相同位置的结点的编号相同,这颗二叉树就被称为完全二叉树。[2]

堆的性质

最大堆最小堆

代码

定义

有限数组形式

int Heap[1024];    //顺序结构的二叉树

若某结点编号为i,且存在左儿子和右儿子,则他们分别对应

Heap[i*2+1];      //左儿子
Heap[i*2+2];      //右儿子

其父节点

Heap[i/2];		//i的父节点

动态数组形式

在项目开发中,经常以动态数组形式出现,在本文主要对这种形式进行介绍

//默认容量
#define DEFAULT_CAPCITY 128

typedef struct _Heap
{
	int *arr;		//储存元素的动态数组
	int size;		//元素个数
	int capacity;	//当前存储的容量	
}Heap;

操作

只使用InitHeap()函数进行初始化即可,AdjustDown()与BuildHeap()仅为堆建立时的内部调用

向下调整结点

//向下调整,将当前结点与其子结点调整为最大堆
//用static修饰禁止外部调用
static void AdjustDown(Heap& heap, int index)
{
	int cur = heap.arr[index];	//当前待调整结点
	int parent, child;

	
	for (parent = index; (parent * 2 + 1) < heap.size; parent = child)
	{
		child = parent * 2 + 1;	//左子结点

		//取两个子结点中最大节点,(child+1)<heap.size防止越界
		if (((child + 1) < heap.size && (heap.arr[child] < heap.arr[child + 1])))
			child++;

		//判断最大子结点是否大于当前父结点
		if (cur >= heap.arr[child])	//将此处的>=改成<=可构建最小堆
		{
			//不大于,不需要调整
			break;
		}
		else
		{
			//大于,则交换
			heap.arr[parent] = heap.arr[child];
			heap.arr[child] = cur;
		}

	}
}

建立堆

//建立堆,用static修饰禁止外部调用
static void BuildHeap(Heap& heap)
{
	int i;
	//从倒数第二层开始调整(若只有一层则从该层开始)
	for (i = heap.size / 2 - 1; i >= 0; i--)
	{
		AdjustDown(heap, i);
	}
}

初始化

//初始化堆
//参数:被初始化的堆,存放初始数据的数组, 数组大小
bool InitHeap(Heap &heap, int *orginal, int size)
{
	//若容量大于size,则使用默认量,否则为size
	int capacity = DEFAULT_CAPCITY>size?DEFAULT_CAPCITY:size;
	
	heap.arr = new int[capacity];	//分配内存,类型根据实际需要可修改
	if(!heap.arr) return false;		//内存分配失败则返回False
	
	heap.capacity = capacity;		//容量
	heap.size = 0;					//元素个数置为0
	
	//若存在原始数组则构建堆
	if(size>0)
	{
		
		memcpy(heap.arr,orginal, size*sizeof(int));
		heap.size = size;	//调整大小
		BuildHeap(heap);	//建堆
	}
	
	return true;
}

打印堆

//以树状的形式打印堆
void PrintHeapAsTreeStyle(Heap hp)
{
	queue<int> que;
	int r = 0;
	que.push(r);
	queue<int> temp;

	while (!que.empty())
	{
		r = que.front();
		que.pop();

		if (r * 2 + 1 < hp.size) temp.push(r * 2 + 1);
		if (r * 2 + 2 < hp.size) temp.push(r * 2 + 2);

		if (que.empty())
		{
			cout << hp.arr[r] << endl;
			que = temp;
			temp = queue<int>();
		}
		else
			cout << hp.arr[r] << " ";

	}
}

测试

main函数

int main()
{
	Heap hp;
	int vals[] = { 1,2,3,87,93,82,92,86,95 };

	if (!InitHeap(hp, vals, sizeof(vals) / sizeof(vals[0])))
	{
		fprintf(stderr, "初始化堆失败!\n");
		exit(-1);
	}

	PrintHeapAsTreeStyle(hp);

	return 0;
}

结果

95
93 92
87 1 82 3
86 2

完整代码

#include <iostream>
#include <queue>

using namespace std;

//默认容量
#define DEFAULT_CAPCITY 128
typedef struct _Heap {
	int* arr;
	int size;
	int capacity;
}Heap;

//向下调整,将当前结点与其子结点调整为最大堆
static void AdjustDown(Heap& heap, int index)
{
	int cur = heap.arr[index];	//当前待调整结点
	int parent, child;

	
	for (parent = index; (parent * 2 + 1) < heap.size; parent = child)
	{
		child = parent * 2 + 1;	//左子结点

		//取两个子结点中最大节点,(child+1)<heap.size防止越界
		if (((child + 1) < heap.size && (heap.arr[child] < heap.arr[child + 1])))
			child++;

		//判断最大子结点是否大于当前父结点
		if (cur >= heap.arr[child])	//将此处的>=改成<=可构建最小堆
		{
			//不大于,不需要调整
			break;
		}
		else
		{
			//大于,则交换
			heap.arr[parent] = heap.arr[child];
			heap.arr[child] = cur;
		}

	}


}

//建立堆,用static修饰禁止外部调用
static void BuildHeap(Heap& heap)
{
	int i;
	//从倒数第二层开始调整(若只有一层则从该层开始)
	for (i = heap.size / 2 - 1; i >= 0; i--)
	{
		AdjustDown(heap, i);
	}
}

//初始化堆
//参数:被初始化的堆,存放初始数据的数组, 数组大小
bool InitHeap(Heap& heap, int* orginal, int size)
{
	//若容量大于size,则使用默认量,否则为size
	int capacity = DEFAULT_CAPCITY > size ? DEFAULT_CAPCITY : size;

	heap.arr = new int[capacity];	//分配内存,类型根据实际需要可修改
	if (!heap.arr) return false;		//内存分配失败则返回False

	heap.capacity = capacity;		//容量
	heap.size = 0;					//元素个数置为0

	//若存在原始数组则构建堆
	if (size > 0)
	{
		
		memcpy(heap.arr, orginal, size * sizeof(int));
		heap.size = size;	//调整大小
		BuildHeap(heap);	//建堆
	}

	return true;
}

//以树状的形式打印堆
void PrintHeapAsTreeStyle(Heap hp)
{
	queue<int> que;
	int r = 0;
	que.push(r);
	queue<int> temp;

	while (!que.empty())
	{
		r = que.front();
		que.pop();

		if (r * 2 + 1 < hp.size) temp.push(r * 2 + 1);
		if (r * 2 + 2 < hp.size) temp.push(r * 2 + 2);

		if (que.empty())
		{
			cout << hp.arr[r] << endl;
			que = temp;
			temp = queue<int>();
		}
		else
			cout << hp.arr[r] << " ";

	}

}

int main()
{
	Heap hp;
	int vals[] = { 1,2,3,87,93,82,92,86,95 };

	if (!InitHeap(hp, vals, sizeof(vals) / sizeof(vals[0])))
	{
		fprintf(stderr, "初始化堆失败!\n");
		exit(-1);
	}

	PrintHeapAsTreeStyle(hp);

	return 0;
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯