文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pytorch中的torch.distributions库怎么使用

2023-07-05 05:42

关注

本文小编为大家详细介绍“Pytorch中的torch.distributions库怎么使用”,内容详细,步骤清晰,细节处理妥当,希望这篇“Pytorch中的torch.distributions库怎么使用”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

Pytorch torch.distributions库

包介绍

torch.distributions包包含可参数化的概率分布和采样函数。 这允许构建用于优化的随机计算图和随机梯度估计器。

不可能通过随机样本直接反向传播。 但是,有两种主要方法可以创建可以反向传播的代理函数。

这些是

评分函数估计量 score function estimato
似然比估计量 likelihood ratio estimator
REINFORCE
路径导数估计量 pathwise derivative estimator
REINFORCE 通常被视为强化学习中策略梯度方法的基础,

路径导数估计器常见于变分自编码器的重新参数化技巧中。

虽然评分函数只需要样本 f(x)的值,但路径导数需要导数 f'(x)。

本文重点讲解Pytorch中的 torch.distributions库。

pytorch 的 torch.distributions 中可以定义正态分布:

import torchfrom torch.distributions import  Normalmean=torch.Tensor([0,2])normal=Normal(mean,1)

sample()就是直接在定义的正太分布(均值为mean,标准差std是1)上采样:

result = normal.sample()print("sample():",result)

输出:

sample(): tensor([-1.3362,  3.1730])

rsample()不是在定义的正太分布上采样,而是先对标准正太分布 N(0,1) 进行采样,然后输出: mean + std × 采样值

result = normal.rsample()print("rsample():",result)

输出:

rsample: tensor([ 0.0530,  2.8396])

log_prob(value) 是计算value在定义的正态分布(mean,1)中对应的概率的对数,正太分布概率密度函数是:

Pytorch中的torch.distributions库怎么使用

对其取对数可得:

Pytorch中的torch.distributions库怎么使用

这里我们通过对数概率还原其对应的真实概率:

print("result log_prob:",normal.log_prob(result).exp())

输出:

result log_prob: tensor([ 0.1634,  0.2005])

读到这里,这篇“Pytorch中的torch.distributions库怎么使用”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯