Spark SQL(6) OptimizedPlan
在这一步spark sql主要应用一些规则,优化生成的Resolved Plan,这一步涉及到的有Optimizer。
之前介绍在sparksession实例化的是会实例化sessionState,进而确定QueryExecution、Analyzer,Optimizer也是在这一步确定的:
protected def optimizer: Optimizer = {
new SparkOptimizer(catalog, experimentalMethods) {
override def extendedOperatorOptimizationRules: Seq[Rule[LogicalPlan]] =
super.extendedOperatorOptimizationRules ++ customOperatorOptimizationRules
}
}
Optimizer也是RuleExecutor的子类,而SparkOptimizer是Optimizer子类,在analyzed步骤知道,其实主要规则就是RuleExecutor子类定义的batchs的规则
sparkOptimizer:
override def batches: Seq[Batch] = (preOptimizationBatches ++ super.batches :+
Batch("Optimize Metadata Only Query", Once, OptimizeMetadataOnlyQuery(catalog)) :+
Batch("Extract Python UDF from Aggregate", Once, ExtractPythonUDFFromAggregate) :+
Batch("Prune File Source Table Partitions", Once, PruneFileSourcePartitions) :+
Batch("Push down operators to data source scan", Once, PushDownOperatorsToDataSource)) ++
postHocOptimizationBatches :+
Batch("User Provided Optimizers", fixedPoint, experimentalMethods.extraOptimizations: _*)
Optimizer:
def batches: Seq[Batch] = {
val operatorOptimizationRuleSet =
Seq(
// Operator push down
PushProjectionThroughUnion,
ReorderJoin,
EliminateOuterJoin,
PushPredicateThroughJoin,
PushDownPredicate,
LimitPushDown,
ColumnPruning,
InferFiltersFromConstraints,
// Operator combine
CollapseRepartition,
CollapseProject,
CollapseWindow,
CombineFilters,
CombineLimits,
CombineUnions,
// Constant folding and strength reduction
NullPropagation,
ConstantPropagation,
FoldablePropagation,
OptimizeIn,
ConstantFolding,
ReorderAssociativeOperator,
LikeSimplification,
BooleanSimplification,
SimplifyConditionals,
RemoveDispensableExpressions,
SimplifyBinaryComparison,
PruneFilters,
EliminateSorts,
SimplifyCasts,
SimplifyCaseConversionExpressions,
RewriteCorrelatedScalarSubquery,
EliminateSerialization,
RemoveRedundantAliases,
RemoveRedundantProject,
SimplifyCreateStructOps,
SimplifyCreateArrayOps,
SimplifyCreateMapOps,
CombineConcats) ++
extendedOperatorOptimizationRules
val operatorOptimizationBatch: Seq[Batch] = {
val rulesWithoutInferFiltersFromConstraints =
operatorOptimizationRuleSet.filterNot(_ == InferFiltersFromConstraints)
Batch("Operator Optimization before Inferring Filters", fixedPoint,
rulesWithoutInferFiltersFromConstraints: _*) ::
Batch("Infer Filters", Once,
InferFiltersFromConstraints) ::
Batch("Operator Optimization after Inferring Filters", fixedPoint,
rulesWithoutInferFiltersFromConstraints: _*) :: Nil
}
(Batch("Eliminate Distinct", Once, EliminateDistinct) ::
// Technically some of the rules in Finish Analysis are not optimizer rules and belong more
// in the analyzer, because they are needed for correctness (e.g. ComputeCurrentTime).
// However, because we also use the analyzer to canonicalized queries (for view definition),
// we do not eliminate subqueries or compute current time in the analyzer.
Batch("Finish Analysis", Once,
EliminateSubqueryAliases,
EliminateView,
ReplaceExpressions,
ComputeCurrentTime,
GetCurrentDatabase(sessionCatalog),
RewriteDistinctAggregates,
ReplaceDeduplicateWithAggregate) ::
//////////////////////////////////////////////////////////////////////////////////////////
// Optimizer rules start here
//////////////////////////////////////////////////////////////////////////////////////////
// - Do the first call of CombineUnions before starting the major Optimizer rules,
// since it can reduce the number of iteration and the other rules could add/move
// extra operators between two adjacent Union operators.
// - Call CombineUnions again in Batch("Operator Optimizations"),
// since the other rules might make two separate Unions operators adjacent.
Batch("Union", Once,
CombineUnions) ::
Batch("Pullup Correlated Expressions", Once,
PullupCorrelatedPredicates) ::
Batch("Subquery", Once,
OptimizeSubqueries) ::
Batch("Replace Operators", fixedPoint,
ReplaceIntersectWithSemiJoin,
ReplaceExceptWithFilter,
ReplaceExceptWithAntiJoin,
ReplaceDistinctWithAggregate) ::
Batch("Aggregate", fixedPoint,
RemoveLiteralFromGroupExpressions,
RemoveRepetitionFromGroupExpressions) :: Nil ++
operatorOptimizationBatch) :+
Batch("Join Reorder", Once,
CostBasedJoinReorder) :+
Batch("Decimal Optimizations", fixedPoint,
DecimalAggregates) :+
Batch("Object Expressions Optimization", fixedPoint,
EliminateMapObjects,
CombineTypedFilters) :+
Batch("LocalRelation", fixedPoint,
ConvertToLocalRelation,
PropagateEmptyRelation) :+
// The following batch should be executed after batch "Join Reorder" and "LocalRelation".
Batch("Check Cartesian Products", Once,
CheckCartesianProducts) :+
Batch("RewriteSubquery", Once,
RewritePredicateSubquery,
ColumnPruning,
CollapseProject,
RemoveRedundantProject)
}
如上这便是在优化这步的所有的规则和策略例如消除子查询别名,表达式替换、算子下推、常量折叠等优化规则,经过这一步之后,就进入物理计划阶段了。
Spark SQL(6) OptimizedPlan
原文地址:https://www.cnblogs.com/ldsggv/p/13380953.html