文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python中搜索的示例分析

2023-06-22 05:07

关注

这篇文章将为大家详细讲解有关python中搜索的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

1. 普通搜索

搜索是指从元素集合中找到某个特定元素的算法过程。搜索过程通常返回 True 或 False, 分别表示元素是否存在。
python中提供了 in 方法可以判断元素是否存在列表中:

# python提供in函数进行搜索a=[3,4,5,8,'t']'t' in a9 in a

结果如下:

python中搜索的示例分析

2. 顺序搜索

顺序搜索故名思义:从列表中的第一个元素开始,沿着默认的顺序逐个查看, 直到找到目标元素或者查完列表。如果查完列表后仍没有找到目标元素,则说明目标元素不在列表中。

顺序搜索过程:

python中搜索的示例分析

1.1 无序下的顺序查找

无序下的顺序搜索很有特点,列表无序,只好一个一个去比较,寻找元素。

#顺序查找def sequentialsearch(testlist,item):    pos=0    found=False    while pos<len(testlist) and not found:        if testlist[pos]==item:            found=True        else:            pos=pos+1    return found

结果如下:

python中搜索的示例分析

分析一下这种顺序查找,这种查找方式,最好的方式就寻找一次就成功了,最坏的情况的需要查找n次,于是时间复杂度是O(n)

1.2 有序下的顺序查找

有序下的顺序查找就是所查找的列表是有序的,

# 有序下的顺序搜索def ordersearch(testlist,item):    pos=0    found=False    stop=False    while pos<len(testlist) and not found and not stop:        if testlist[pos]==item:            found=True        else:            if testlist[pos]>item:                stop=True            else:                pos=pos+1    return found

结果如下:

python中搜索的示例分析

分析一下这种搜索方法,正常情况下来说,最好情况下,搜索1次就能成功,最差情况只需要n/2次即可搜索完成,但时间复杂度依旧是O(n),只有当列表中不存在目标元素时,有序排列的元素才会提高顺序搜索的效率。

2.二分查找

二分查找:是利用列表有序的这个原理,从中间的元素着手。如果这个元素就是目标元素,那就立即停止搜索;如果不是,则可以利用列表有序的特性,排除一半的元素。如果目标元素比中间的元素大,就可以直接排除列表的左半部分和中间的元素。这是因为,如果列表包含目标元素,它必定位于右半部分。

在有序整数列表中进行二分搜索:

python中搜索的示例分析

二分查找实现方式:

def binarysearch(testlist,item):    testlist.sort()#排序    left=0#左指针    right=len(testlist)-1#右指针    found=False    while left<=right and not found:        mid=(left+right)//2#取中间值        if testlist[mid]==item:            found=True        else:            if testlist[mid]<item:                left=mid+1            else:                right=mid-1    return found

看看效果:

python中搜索的示例分析

二分查找递归实现:

def binarysearch3(testlist,item):     if len(testlist) == 0:         return False      else:         mid = len(testlist) // 2         if testlist[mid] == item:             return True         else:             if item < testlist[mid]:                 return binarysearch3(testlist[:mid], item)             else:                 return binarysearch3(testlist[mid+1:], item)

看看效果:

python中搜索的示例分析

总结一下二分查找:在进行二分搜索时,每一次比较都将待考虑的元素减半,。那么,要检查完整个列表,二分搜索算法最多要比较多少次呢?假设列表共有 n 个元素,第一次比较后剩下n 个元素,第 2 次比较2后剩下n /4个元素,接下来是n/8 ,然后是n/16 ,依此类推。列表能拆分多少次?

二分搜索算法的表格分:

python中搜索的示例分析

拆分足够多次后,会得到只含一个元素的列表。这个元素要么就是目标元素,要么不是。无论是哪种情况,计算工作都已完成。要走到这一步,需要比较 i 次,其中n 2 i {n}\over{2^i}
2
i
 
n

 =1 。由此可得比较次数的最大值与列表的元素个数是对数关系。所以,二分搜索算法的时间复杂度是O ( l o g 2 n ) O(log_2 n)O(log
2

 n)。

3.散列查找

散列查找:通过散列构建一个时间复杂度为 O(1)的数据结构。我们平常听的最多哈希表就是散列的一种方式。
散列表:散列表是元素集合,其中的元素以一种便于查找的方式存储。散列表中的每个位置通常被称 为槽,其中可以存储一个元素。槽用一个从 0 开始的整数标记,例如 0 号槽、1 号槽、2 号槽, 等等。初始情形下,散列表中没有元素,每个槽都是空的。可以用列表来实现散列表,并将每个元素都初始化为 Python 中的特殊值 None。下图展示了大小 m 为 11 的散列表。也就是说,表中有 m 个槽,编号从 0 到 10。

有11 个槽的散列表:

python中搜索的示例分析

散列函数:将散列表中的元素与其所属位置对应起来。对散列表中的任一元素,散列函数返回 一个介于 0 和 m – 1 之间的整数。假设有一个由整数元素 54、26、93、17、77 和 31 构成的集 合。首先来看第一个散列函数,它有时被称作“取余函数”,即用一个元素除以表的大小,并将 得到的余数作为散列值(h(item) = item%11)。下图给出了所有示例元素的散列值。取余函数是一个很常见的散列函数,这是因为结果必须在槽编号范围内。

使用余数作为散列值:

python中搜索的示例分析

计算出散列值后,就可以将每个元素插入到相应的位置,如图 5-5 所示。注意,在 11 个槽 中,有 6 个被占用了。占用率被称作载荷因子,记作λ \lambdaλ,定义如下:

python中搜索的示例分析

有 6 个元素的散列表:

python中搜索的示例分析

3.1 几种散列函数

给定一个元素集合,能将每个元素映射到不同的槽,这种散列函数称作完美散列函数。如果元素已知,并且集合不变,那么构建完美散列函数是可能的。不幸的是,给定任意一个元素集合,没有系统化方法来保证散列函数是完美的。所幸,不完美的散列函数也能有不错的性能。

3.2 处理散列表冲突

完美的散列表,一个元素只对应着一个卡槽,可是如果当2个元素被分配到一个卡槽时,必须通过一种系统化方法在散列表中安置第二个元素。这个过程被称为处理冲突。

开发定址法:在散列表中找到另一个空槽,用于放置引起冲突的元素。简单的做法是从起初的散列值开始,顺序遍历散列表,直到找到一个空槽。注意,为了遍历散列表,可能需要往回检查第一个槽。(例如:将(54, 26, 93, 17, 77, 31, 44, 55, 20)放入卡槽中。)

python中搜索的示例分析

再散列:采用“加 3”探测策略处理冲突后的元素分布情况。发生冲突时,为了找到空槽,该策略每次跳两个槽。

python中搜索的示例分析

平方探测:线性探测的一个变体,它不采用固定的跨步大小,而是通过再散列函数递增散列 值。如果第一个散列值是 h,后续的散列值就是 h+1、h+4、h+9、h+16,等等。换句话说,平方探测的跨步大小是一系列完全平方。

python中搜索的示例分析

链接法:允许散列 表中的同一个位置上存在多个元素。发生冲突时,元素仍然被插入其散列值对应的槽中。不过, 随着同一个位置上的元素越来越多,搜索变得越来越困难。

python中搜索的示例分析

3.3 散列表的实现(加1重复)

哈希散列的实现:

#哈希表class HashTable:    def __init__(self):         self.size = 11         self.slots = [None] * self.size         self.data = [None] * self.size    def put(self, key, data):         hashvalue = self.hashfunction(key, len(self.slots))         if self.slots[hashvalue] == None:             self.slots[hashvalue] = key            self.data[hashvalue] = data         else:             if self.slots[hashvalue] == key:                 self.data[hashvalue] = data #替换             else:                 nextslot = self.rehash(hashvalue, len(self.slots))                 while self.slots[nextslot] != None and self.slots[nextslot] != key:                     nextslot = self.rehash(nextslot, len(self.slots))                if self.slots[nextslot] == None:                     self.slots[nextslot] = key                     self.data[nextslot] = data                else:                     self.data[nextslot] = data #替换     def hashfunction(self, key, size):         return key%size     def rehash(self, oldhash, size):         return (oldhash + 1)%size#get函数    def get(self, key):         startslot = self.hashfunction(key, len(self.slots))         data = None         stop = False         found = False         position = startslot        while self.slots[position] != None and not found and not stop:             if self.slots[position] == key:                 found = True                 data = self.data[position]             else:                  position=self.rehash(position, len(self.slots))                 if position == startslot:                     stop = True                     return data     def __getitem__(self, key):         return self.get(key)     def __setitem__(self, key, data):         self.put(key, data)

结果如下:

python中搜索的示例分析

我们分析一下散列查找:在最好情况下,散列搜索算法的时间复杂度是 O(1),即常数阶。但可能发生冲突,所以比较次数通常不会这么简单。

关于“python中搜索的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯