文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pytorch中TensorBoard及torchsummary的使用方法

2023-06-15 01:05

关注

这篇文章将为大家详细讲解有关Pytorch中TensorBoard及torchsummary的使用方法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

1.TensorBoard神经网络可视化工具

TensorBoard是一个强大的可视化工具,在pytorch中有两种调用方法:

from tensorboardX import SummaryWriter

这种方法是在官方还不支持tensorboard时网上有大神写的

from torch.utils.tensorboard import SummaryWriter

这种方法是后来更新官方加入的

1.1 调用方法

1.1.1 创建接口SummaryWriter

功能:创建接口

调用方法:

writer = SummaryWriter("runs")

参数:

log_dir:event file输出文件夹

comment:不指定log_dir时,文件夹后缀

filename_suffix:event file文件名后缀

1.1.2 记录标量add_scalars()

功能:记录标量add_scalars()

调用方法:

writer.add_scalars("name",{"dic":val},epoch)

参数:

tag:图像的标签名

scalar_step:要记录的标量

global_step:轮次

1.1.3 统计直方图add_histogram()

功能:统计直方图与多分位数折线图

调用方法:

writer.add_histogram("weight",self.fc.weight,epoch)

参数:

tag:图像的标签名

values:要画直方图的数据

global_step:轮次

bins:取值有 ‘tensorflow'、‘auto'、‘fd' 等

1.1.4 批次显示图像add_image()

功能:批次显示图像

调用方法:

writer.add_image(“Cifar10”, img_batch, epoch,'CHW')

参数:

tag:图像的标签名

img_tensor:图像数据,注意尺寸

global_step:轮次

dataformats:数据形式,CHW,HWC,HW

1.1.5 查看模型图add_graph()

功能:查看模型图

调用方法:

writer.add_graph(model=net,input_to_model=torch.randn(1,3, 224, 224).to(device))

参数:

model:模型,必须是nn.Module

input_to_model:输出给模型的数据

verbose:是否打印计算图结构信息

写完记得要写 writer.close()

2.查看网络层形状、参数torchsummary

功能:查看网络层形状、参数

调用方法:

from torchsummary import summarysummary(net, input_size=(3, 224, 224))

参数:

model:pytorch模型

input_size:模型输入size

batch_size:batch size

device:“cuda” or “cpu”

3.启动tensorboard

在文件路径中cmd打开终端,输入

tensorboard --logdir="./runs"

runs是我保存文件的文件名,打开以下链接

Pytorch中TensorBoard及torchsummary的使用方法

补充:pytorch调用tensorboard方法尝试

tensorboard提供了用于监视训练损失很好的接口,可以帮助我们更好的调整参数。下文介绍如何在pytorch中调用tensorboard。

首先

安装tensorboard、tensorflow以及tensorboardX

第二

在文件开头导入SummaryWriter

from tensorboardX import SummaryWriter

第三

同tensorflow的tensorboard一样,tensorboardX提供多种记录方式如scalar、image等。

writer = SummaryWriter('path')

如果不添加path,则默认以时间命名。

第四

添加监视变量

writer.add_scalar('Train/Acc', Acc, iter)

第五

打开tensorboard

tensorboard --logdir 'path'

第六

在浏览器打开6006端口

Pytorch中TensorBoard及torchsummary的使用方法

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

关于“Pytorch中TensorBoard及torchsummary的使用方法”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯