文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何使用Python检测和识别车牌?

2023-05-14 21:17

关注

​译者 | 布加迪

审校 | 孙淑娟

车牌检测与识别技术用途广泛,可以用于道路系统、无票停车场、车辆门禁等。这项技术结合了计算机视觉和人工智能。

本文将使用Python创建一个车牌检测和识别程序。该程序对输入图像进行处理,检测和识别车牌,最后显示车牌字符,作为输出内容。

一、创建Python环境

要轻松地完成本教程,您需要熟悉Python基础知识。应先创建程序环境。

在开始编程之前,您需要在环境中安装几个库。打开任何Python IDE,创建一个Python文件。在终端上运行命令以安装相应的库。您应该在计算机上预先安装Python PIP。

二、如何在您的计算机上安装Tesseract OCR?

Tesseract OCR是一种可以识别语言字符的引擎。在使用pytesseract库之前,您应该在计算机上安装它。步骤如下:

1. 打开任何基于Chrome的浏览器。

2. 下载Tesseract OCR安装程序。

3. 运行安装程序,像安装其他程序一样安装它。

准备好环境并安装tesseract OCR后,您就可以编写程序了。

1.导入库

首先导入在环境中安装的库。导入库让您可以在项目中调用和使用它们的函数。

您需要以cv2形式导入OpenCV-Python库。使用与安装时相同的名称导入其他库。

2.获取输入

然后将pytesseract指向安装Tesseract引擎的位置。使用cv2.imread函数将汽车图像作为输入。将图像名称换成您在使用的那个图像的名称。将图像存储在项目所在的同一个文件夹中,以方便操作。

pytesseract.pytesseract.tesseract_cmd = 'C:\Program Files\Tesseract-OCR\tesseract.exe'
original_image = cv2.imread('image3.jpeg')

您可以将下面的输入图像换成想要使用的图像。

3.预处理输入

将图像宽度调整为500像素,然后将图像转换成灰度图像,因为canny边缘检测函数只适用于灰度图像。最后,调用bilateralFilter函数以降低图像噪声。

original_image = imutils.resize(original_image, width=500 )
gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
gray_image = cv2.bilateralFilter(gray_image, 11, 17, 17)

4.在输入端检测车牌

检测车牌是确定汽车上有车牌字符的那部分的过程。

(1)执行边缘检测

先调用cv2.Canny函数,该函数可自动检测预处理图像上的边缘。

edged_image = cv2.Canny(gray_image, 30,200)

我们将通过这些边缘找到轮廓。

(2)寻找轮廓

调用cv2.findContours函数,并传递边缘图像的副本。这个函数将检测轮廓。使用cv2.drawContours函数,绘制原始图像上已检测的轮廓。最后,输出所有可见轮廓已绘制的原始图像。

contours, new = cv2.findContours(edged_image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
img1 = original_image.copy()
cv2.drawContours(img1, contours, -1, (0, 255, 0), 3)
cv2.imshow("img1", img1)

该程序绘制它在汽车图像上找到的所有轮廓。

图片

找到轮廓后,您需要对它们进行筛选,以确定最佳候选轮廓。

(3)筛选轮廓

根据最小面积30对轮廓进行筛选。忽略小于这个面积的轮廓,因为它们不太可能是车牌轮廓。复制原始图像,在图像上绘制前30个轮廓。最后,显示图像。

contours = sorted(contours, key = cv2.contourArea, reverse = True)[:30]
# stores the license plate contour
screenCnt = None
img2 = original_image.copy()

# draws top 30 contours
cv2.drawContours(img2, contours, -1, (0, 255, 0), 3)
cv2.imshow("img2", img2)

现在轮廓数量比开始时要少。唯一绘制的轮廓是那些近似含有车牌的轮廓。

图片

最后,您需要遍历已筛选的轮廓,确定哪一个是车牌。

(4)遍历前30个轮廓

创建遍历轮廓的for循环。寻找有四个角的轮廓,确定其周长和坐标。存储含有车牌的轮廓的图像。最后,在原始图像上绘制车牌轮廓并加以显示。

count = 0
idx = 7

for c in contours:
# approximate the license plate contour
contour_perimeter = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.018 * contour_perimeter, True)

# Look for contours with 4 corners
if len(approx) == 4:
screenCnt = approx

# find the coordinates of the license plate contour
x, y, w, h = cv2.boundingRect(c)
new_img = original_image [ y: y + h, x: x + w]

# stores the new image
cv2.imwrite('./'+str(idx)+'.png',new_img)
idx += 1
break

# draws the license plate contour on original image
cv2.drawContours(original_image , [screenCnt], -1, (0, 255, 0), 3)
cv2.imshow("detected license plate", original_image )

循环之后,程序已识别出含有车牌的那个轮廓。

图片

5.识别检测到的车牌

识别车牌意味着读取已裁剪车牌图像上的字符。加载之前存储的车牌图像并显示它。然后,调用pytesseract.image_to_string函数,传递已裁剪的车牌图像。这个函数将图像中的字符转换成字符串。

# filename of the cropped license plate image
cropped_License_Plate = './7.png'
cv2.imshow("cropped license plate", cv2.imread(cropped_License_Plate))

# converts the license plate characters to string
text = pytesseract.image_to_string(cropped_License_Plate, lang='eng')

已裁剪的车牌如下所示。上面的字符将是您稍后在屏幕上输出的内容。

图片

检测并识别车牌之后,您就可以显示输出了。

6.显示输出

这是最后一步。您将提取的文本输出到屏幕上。该文本含有车牌字符。

print("License plate is:", text)
cv2.waitKey(0)
cv2.destroyAllWindows()

程序的预期输出应该如下图所示:

图片

车牌文本可以在终端上看到。

三、磨砺您的Python技能

用Python检测和识别车牌是一个有意思的项目。它有挑战性,所以应该会帮助您学到关于Python的更多知识。

说到编程,实际运用是掌握一门语言的关键。为了锻炼技能,您需要开发有意思的项目。

原文链接:https://www.makeuseof.com/python-car-license-plates-detect-and-recognize/

以上就是如何使用Python检测和识别车牌?的详细内容,更多请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯