文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python实现图像最近邻插值

2024-04-02 19:55

关注

引言:

最近邻插值Nearest Neighbour Interpolate算法是图像处理中普遍使用的图像尺寸缩放算法,由于其实现简单计算速度快的特性深受工程师们的喜爱。

图像插值技术是图像超分辨率领域的重要研究方法之一,其目的是根据已有的低分辨率图像(Low Resolution,LR)获得高分辨率图像(High Resolution,HR)。

本文一方面对最邻近插值算法的流程进行分析,另一方面借助python实现基本的最近邻插值算法。

注:网上的资料有的翻译是“近邻”,也有的翻译是“临近”。

1、最近邻插值算法思想

插值的目的是根据已知的图像的像素值获得未知目标图像的像素值,插值变换过程如下图(PPT画的背景没去除)所示:

其中src表示原始图像,tar表示插值得到的目标图像,H和W分别表示图像的高度和宽度。插值的核心是找到(tar_x, tar_y)和(src_x, src_y)的映射关系,从而实现对目标图像的每一个像素点进行赋值。假设目的是将原始图像长度和宽度扩大(3,4)倍,即:

ratio_H = tar_H/src_H = tar_x/src_x = 3
ratio_W = tar_W/src_W = tar_y/src_y = 4

通过上式变形,得到目标图像的像素点和原始图像的像素点映射如下:

tar_x = src_x/ratio_H
tar_y = src_y/ratio_W

知道了像素点之间的映射关系,实现算法就很容易了,算法流程如下:

2、python实现最邻近插值

有了前面的理论分析就很容易实现了,自己实现中比较难理解的地方就是“坐标变换关系”!如果是将原始图像放大整数倍很容易理解,比如一张原始10x10图像放大到目标20x20图像,那么20x20图像中的任一个像素点(tar_x,tar_y)的值来自原始10x10图像的(src_x,src_y)=int(tar_x/2, tar_y/2),也就是正好是除以2的位置;然而经常需要放大的倍数是小数倍,比如将10x10放大到15x15,这样(tar_x,tar_y)的值来自10x10图像中(src_x, src_y)=int(tar_x/1.5, tar_y/1.5)。

代码如下:

def nearest(image, target_size):
    """
    Nearest Neighbour interpolate for RGB  image
    
    :param image: rgb image
    :param target_size: tuple = (height, width)
    :return: None
    """
    if target_size[0] < image.shape[0] or target_size[1] < image.shape[1]:
        raise ValueError("target image must bigger than input image")
    # 1:按照尺寸创建目标图像
    target_image = np.zeros(shape=(*target_size, 3))
    # 2:计算height和width的缩放因子
    alpha_h = target_size[0]/image.shape[0]
    alpha_w = target_size[1]/image.shape[1]

    for tar_x in range(target_image.shape[0]-1):
        for tar_y in range(target_image.shape[1]-1):
            # 3:计算目标图像人任一像素点
            # target_image[tar_x,tar_y]需要从原始图像
            # 的哪个确定的像素点image[src_x, xrc_y]取值
            # 也就是计算坐标的映射关系
            src_x = round(tar_x/alpha_h)
            src_y = round(tar_y/alpha_w)

            # 4:对目标图像的任一像素点赋值
            target_image[tar_x, tar_y] = image[src_x, src_y]

    return target_image

得到的插值结果的插值结果如下:

可以看出插值以后的图像明显存在锯齿效应,很多地方出现了“方格”。

到此这篇关于python实现图像最近邻插值的文章就介绍到这了,更多相关python图像邻插值内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯