文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

关系型、非关系型数据库存储选型盘点大全

2024-12-01 16:07

关注

故写了这篇文章,抛出我的观察和思考,希望日后可以将一些更先进 (合适) 的技术引入公司业务,助力业务发展。

存储选型的考虑要素

存储选型的目的还是为了我们的使用场景和用户服务,因此在选型前需要回答一些业务指标 & 技术指标方面的问题,以便于我们清楚存储选型的应用环境。

存储引擎分类及特性

数据库的分类方式非常多样,因参考维度不同而存在较大差异,下面是常见的一些分类。

先拿我们最熟悉的关系数据库来说,它的优点非常多,我们选用关系数据库的理由可简单概括为以下几点:

可由二维表结构来逻辑表达,相对网状、层次等其他模型更加容易被理解。严格遵循数据格式与长度规范,数据以行为单位,一行数据表示一个实体信息,每一行数据的属性都是相同的。

支持 ACID 特性,可以维护数据之间的一致性,这是使用关系数据库非常重要的一个理由。

通用的 SQL 语言使得操作关系型数据库非常方便,支持 join 等复杂查询,Sql + 二维关系是关系型数据库最无可比拟的优点,这种易用性非常贴近开发者。

数据持久化到磁盘,没有丢失数据风险。

最常用的关系型数据库产品 MySql、Oracle 服务器性能卓越,服务稳定,通常很少出现宕机异常。

然而,在享受关系数据库带来的便利的同时,我们也不得不面临很多麻烦的问题:

数据按行存储,即使只针对某一列进行运算,也会将整行数据从存储设备中读入内存,导致 IO 较高。写入更新频繁的情况下,数据库往往会出现 CPU 飙高、Sql 执行慢、客户端报数据库连接池不够等异常情况,且性能瓶颈通过加 CPU、换固态硬盘、继续买服务器加数据库做分库等方式处理 ROI 不高,受限于其本身的特点,可能花了很多钱都未必能达到想要的效果。因此例如万人秒杀这种场景,我们绝对不可能通过数据库直接去扣减库存,需要做好流量漏斗。

数据一致性是关系型数据库的核心,但是同样为了维护数据一致性的代价也非常大。SQL 标准为事务定义了不同的隔离级别,从低到高依次是读未提交、读已提交、可重复度、串行化,事务隔离级别越低,可能导致的并发异常越多,但是能提供的并发能力越强。那么为了保证事务一致性,数据库就需要提供并发控制与故障恢复两种技术,前者用于减少并发异常,后者可以在系统异常的时候保证事务与数据库状态不会被破坏。对于并发控制,其核心思想就是加锁,无论是乐观锁还是悲观锁,只要提供的隔离级别越高,那么读写性能必然会受影响。

为了提供丰富的查询能力,通常热点表都会有多个二级索引,一旦有了二级索引,数据的新增必然伴随着所有二级索引的新增,数据的更新也必然伴随着所有二级索引的更新,这不可避免地降低了关系型数据库的读写能力,且索引越多读写能力越差。除了数据文件不可避免地占空间外,索引占的空间其实也并不少。

随着业务规模扩大,一种方式是对数据库做分库,做了分库之后,数据迁移(1 个库的数据按照一定规则打到 2 个库中)、跨库 join、分布式事务处理都是需要考虑的问题,尤其是分布式事务处理,业界当前都没有特别好的解决方案。

例如 like “% 新年快乐 %”,只能搜索到 “新年快乐,爱大家”,无法搜索到 “新年真是太快乐了,爱大家” 这样的文本,即不具备分词能力,且 like 查询在 “% 新年快乐” 这样的搜索条件下,无法命中索引,将会导致查询效率大大降低。

由于数据库存储的是结构化数据,因此表结构 schema 是固定的,扩展不方便,如果需要修改表结构,需要执行 DDL(data definition language)语句修改,修改期间会导致锁表,部分服务不可用。

如上文所分析的,关系型数据库优点明显,缺点同样不能忽视,因此通常在企业规模不断扩大的情况下,不会一味指望通过增强数据库的能力来解决数据存储问题,而是会引入其他存储,也就是我们说的 NoSql。

NoSql 的全称为 Not Only SQL,泛指非关系型数据库,是对关系型数据库的一种补充,特别注意补充这两个字,这意味着 NoSql 与关系型数据库并不是对立关系,二者各有优劣,取长补短,在合适的场景下选择合适的存储引擎才是正确的做法。

下面看一下常用的 NoSql 及他们的代表产品,并对每种 NoSql 的优缺点和适用场景做一下分析,便于熟悉每种 NoSql 的特点,方便技术选型。

1、KV 型 NoSql(代表——Redis)

KV 型 NoSql 顾名思义就是以键值对形式存储的非关系型数据库,是最常见的一种 NoSql。Redis、MemCache 是其中的代表,Redis 又是 KV 型 NoSql 中应用最广泛的 NoSql,KV 型数据库以 Redis 为例,最大的优点总结下来主要有两点:

所以说,KV 型 NoSql 最大的优点就是高性能,利用 Redis 自带的 BenchMark 做基准测试,TPS 可达到 10 万的级别,性能非常强劲。同样的 Redis 也有所有 KV 型 NoSql 都有的比较明显的缺点:

综上所述,KV 型 NoSql 最合适的场景就是缓存的场景:

针对那些读远多于写的数据,引入一层缓存,每次读从缓存中读取,缓存中读取不到,再去数据库中取,取完之后再写入到缓存,对数据做好失效机制通常就没有大问题了。通常来说,缓存是性能优化的第一选择也是见效最明显的方案。

2、搜索型 NoSql(代表——ElasticSearch)

传统关系型数据库主要通过索引来达到快速查询的目的,但是在全文搜索的场景下,索引是无能为力的,like 查询无法满足所有模糊匹配需求,使用限制太大且使用不当容易引起慢查询问题,搜索型 NoSql 的诞生正是为了解决关系型数据库全文搜索能力较弱的问题,ElasticSearch 是搜索型 NoSql 的代表产品。

全文搜索的原理是倒排索引,我们看一下什么是倒排索引,它是关键字 –> 文档的映射,举例来说,现在这里有四个短句:

搜索引擎会根据一定的分词规则将一句话切成多个关键字,并以关键字的维度维护关键字在每个文本中的出现次数。这样下次搜索“Tom”关键字的时候,由于 Tom 这个词语在“Tom is Tom”、“Tom is my friend”、“Tom is Betty’s husband” 三句话中都出现过,因此这三条记录都会被检索出来,而且由于”Tom is Tom” 这句话中”Tom” 出现了 2 次,因此这条记录对”Tom” 这个单词的匹配度最高,最先展示。这就是搜索引擎倒排索引的基本原理,假设某个关键字在某个文档中出现,那么倒排索引中有两部分内容:

相对应的,我们搜索”Betty Tom” 这两个词语也是一样,搜索引擎将”Betty Tom” 切分为”Tom”、”Betty” 两个单词,根据开发者指定的满足率,比如满足率 = 50%,那么只要记录中出现了两个单词之一的记录都会被检索出来,再按照匹配度进行展示。

搜索型 NoSql 以 ElasticSearch 为例,它的优点为:

1)支持分词场景、全文搜索,这是区别于关系型数据库最大特点。

2)数据写文件无丢失风险,在集群环境下可以方便横向扩展,可承载 PB 级别的数据。

3)支持条件查询,支持聚合操作,类似关系型数据库的 Group By,但是功能更加强大,适合做数据分析。

4)高可用,自动发现新的或者失败的节点,重组和重新平衡数据,确保数据是安全和可访问的。

同样,ElasticSearch 也有比较明显的缺点:

1)性能全靠内存来顶,也是使用的时候最需要注意的点,非常吃内存,大数据量下 64G + SSD 基本就是标配,相同的配置多一倍内存,一个月差不多就要多花好多钱。至于 ElasticSearch 内存主要用在以下几个地方:

2)数据结构灵活性不高,字段一旦建立就没法修改类型了,假如建立的数据表某个字段没有加全文索引,想加上,那么只能把整个表删了再重建。

3)读写之间有延迟,写入的数据差不多 1s 样子会被读取到(数据写入时需要维护很多索引)。

因此,搜索型 NoSql 最适用的场景就是有条件搜索尤其是全文搜索的场景,作为关系型数据库的一种替代方案,通常搜索型 NoSql 也会作为一层前置缓存,来对关系型数据库进行保护。

此外,搜索型数据库还有一种非常重要的应用场景。我们可以想,一旦对数据库做了分库分表后,原来可以在单表中做的聚合操作、统计操作是否统统失效?例如我把订单表分 16 个库,1024 张表,那么订单数据就散落在 1024 张表中,我想要统计昨天浙江省单笔成交金额最高的订单是哪笔如何做?这就是搜索型 NoSql 的另一大作用了,我们可以把分表之后的数据统一打在搜索型 NoSql 中,利用搜索型 NoSql 的搜索与聚合能力完成对全量数据的查询。

3、列式 NoSql(代表——HBase)

列式 NoSql 和关系型数据库一样都有主键的概念,区别在于关系型数据库是按照行组织的数据,数据字段即使没有值同样占空间,列式存储完全是另一种方式,它是按列进行数据组织的,好处在于:

大数据时代最具代表性的技术之一 HBase 就是列式 NoSQL 的产品实现,其优点主要是:

缺点主要表现在:

因此 HBase 比较适用于 KV 型存储且未来无法预估数据增长量的场景,另外 HBase 使用还是需要一定的经验,主要体现在 RowKey 的设计上。

4、文档型 NoSql(代表——MongoDB)

文档型 NoSql 指的是将半结构化数据存储为文档的一种 NoSql,文档型 NoSql 通常以 JSON 或者 XML 格式存储数据,因此文档型 NoSql 是没有 Schema 的,由于没有 Schema 的特性,我们可以随意地存储与读取数据,因此文档型 NoSql 的出现是解决关系型数据库表结构扩展不方便的问题的。

MongoDB 是文档型 NoSql 的代表产品,同时也是所有 NoSql 产品中的明星产品之一,它的很多概念与关系数据库类似,因此,对于 MongDB,我们只需要理解成一个 Free-Schema 的关系型数据库就好了,其优点主要是:

缺点在于:

总而言之,MongDB 的使用场景很大程度上可以对标关系型数据库,但是比较适合处理那些没有 join、没有强一致性要求且表 Schema 会常变化的数据。

通过以上讨论分析我们心中已经有了一个基本的选型框架指导,实际上在数据库选型时回答自己两个核心问题就好了:

NoSQL 数据库都是通过牺牲了 ACID 特性来获取更高性能的,假设表数据有很强的事务特性需求,那么这类数据是不适合放在非关系型数据库。此外,选用 NoSQL 数据库时也要根据公司技术栈框架、业务特性、运维成本等多方面考虑是否采纳。

总结

关系型数据库和 NoSQL 数据库的选型,往往需要考虑几个指标:

常见软件系统数据库选型参考如下:

设计实践中,要基于需求、业务驱动架构,无论选用 RDB/NoSQL, 一定是以需求为导向,最终数据存储方案必然是各种权衡的综合性设计。

来源:代码真香内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯