文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

OpenCV如何去除图片中的阴影的实现

2024-04-02 19:55

关注

一、前言

如果你自己打印过东西,应该有过这种经历。如果用自己拍的图片,在手机上看感觉还是清晰可见,但是一打印出来就是漆黑一片。比如下面这两张图片:

在这里插入图片描述

因为左边的图片有大片阴影,所有打印出来的图片不堪入目(因为打印要3毛钱,所以第二张图片只是我用程序模拟的效果)。

那有什么办法可以解决吗?答案是肯定的,今天我们就来探讨几个去除阴影的方法。

二、如何去除阴影?

首先为了方便处理,我们通常会对图片进行灰度转换(即将图片转换成只有一个图层的灰色图像)。

然后我们分析一下,在上面的图片中有三个主色调,分别是字体颜色(黑色)、纸张颜色(偏白)、阴影颜色(灰色)。知道这点后我们就好办了。我们只需要把灰色和白色部分都处理为白色就好了。

那要我怎么才知道白色和灰色区域呢?对于一个8位的灰度图,黑色部分的像素大致在0-30左右。白色和灰色应该在31-255左右(这个范围只是大致估计,实际情况需要看图片)。如图:

在这里插入图片描述

左边是原图,右边是处理后的图片。我们将灰色和接近白色的部分都处理成了白色。

那下面我们就开始处理吧。

三、numpy的ndarray数组

可能有些读者没有接触过numpy,这里简单说一下。

numpy是一个第三方的模块,用它我们可以很方便的处理多维数组(ndarray数组)。而图片在OpenCV中的存储方式正好是ndarray,所以我们对数组的操作就是对图片的操作。

在使用之前我们需要安装一下OpenCV模块:


pip install opencv-python

在安装OpenCV时会自动安装numpy。

下面我们主要是看看布尔索引的操作,先看下面代码:


import numpy as np
# 创建一个元素为1, 0, 1, 1的ndarray数组
arr = np.array([1, 0, 1, 1])
# 判断数组中有没有0
res = arr == 0
# 将数组中为0的元素赋值为10
arr[res] = 10

如果没有接触过numpy会不太理解上面的语法。我们来详细说一下:

创建ndarray数组:我们通过np.array可以将现有的列表装换成一个ndarray对象,这个很好理解

判断数组中有没有0:我们可以直接用ndarray对象来判断,比如:arr == 0,他会返回一个元素结构和数量一样的ndarray对象。但是返回的对象原始类型式bool,我们来看看res的输出:

[False True False False]

从结果可以看出,我们比较arr==0就是对数组中每个元素进行比较,并返回比较的布尔值。

将数组中为0的元素赋值为10:而最难理解的arr[res]操作。它其实就是拿到res中为True的视图,比如上面的结果是第二个为True则只会返回第二个元素的视图。我们执行下面的代码:


arr[res] = 10

就是把对应res为True的部分赋值为10,也就是将arr中值为0的部分赋值为10。

下面是arr最后的结果:

[ 1 10 1 1]

可以看到原本的0处理为了1。

四、去除阴影

现在我们知道了布尔索引,我们可以对图片进行处理了。我们只需要读取图片,然后将像素值大于30的部分处理为白色就好了。下面是我们的代码:


import cv2
# 读取图片
img = cv2.imread('page.jpg', 0)
# 将像素值大于30的部分修改为255(白色)
img[img > 30] = 255
# 保存修改后的图片
cv2.imwrite('res.jpg', img)

上面的代码非常简单,我们使用cv2.imread函数读取图片,第一个参数是图片路径,第二个参数表示读取为灰度图。我们来看看效果图:

在这里插入图片描述

可以看到阴影部分被很好地去除了。有些字比较模糊,我们可以通过调节灰白色地范围调整。比如:


img[img > 40] = 255

具体的值就要根据要处理的图片来决定了。

五、改进

对于上面地处理,还可以做一个小小地改进。我们可以让纸张颜色不那么白,我们来看改进后的代码:


import cv2
import numpy as np
img = cv2.imread('page.jpg', 0)
# 计算灰白色部分像素的均值
pixel = int(np.mean(img[img > 140]))
# 把灰白色部分修改为与背景接近的颜色
img[img > 30] = pixel
cv2.imwrite('res.jpg', img)

在上面的代码中我们不再是将灰白色部分设置为255,而是事先计算了一个数值。


pixel = int(np.mean(img[img > 140]))

猜测阴影部分的颜色值小于140,因此先索引出图像中大于140的部分。然后求平均值,这样我们算出来的大致就是原图的背景颜色,然后将图片不是文字的部分处理为背景颜色,就是最终结果了。下面是我们的效果图:

在这里插入图片描述

可以看到这次效果要更好了。但是因为背景都是一个颜色,所以看起来还是会有一些差别。

不过有一点需要说一下,上面的操作只适用于比较简单的图片,比如试卷这种。

到此这篇关于OpenCV如何去除图片中的阴影的实现的文章就介绍到这了,更多相关OpenCV 去除图片阴影内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯