文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

OpenCV实战之图像拼接的示例代码

2024-04-02 19:55

关注

背景

图像拼接可以应用到手机中的全景拍摄,也就是将多张图片根据关联信息拼成一张图片;

实现步骤

1、读文件并缩放图片大小;

2、根据特征点和计算描述子,得到单应性矩阵;

3、根据单应性矩阵对图像进行变换,然后平移;

4、图像拼接并输出拼接后结果图;

一、读取文件

第一步实现读取两张图片并缩放到相同尺寸;

代码如下:

img1 = cv2.imread('map1.png')
img2 = cv2.imread('map2.png')

img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))

input = np.hstack((img1, img2))
cv2.imshow('input', input)
cv2.waitKey(0)

上图为我们需要拼接的两张图的展示,可以看出其还具有一定的旋转变换,之后的图像转换必定包含旋转的操作;

二、单应性矩阵计算

主要分为以下几个步骤:

1、创建特征转换对象;

2、通过特征转换对象获得特征点和描述子;

3、创建特征匹配器;

4、进行特征匹配;

5、过滤特征,找出有效的特征匹配点;

6、单应性矩阵计算

实现代码:

def get_homo(img1, img2):
    # 1实现
    sift = cv2.xfeatures2d.SIFT_create()
    # 2实现
    k1, p1 = sift.detectAndCompute(img1, None)
    k2, p2 = sift.detectAndCompute(img2, None)
    # 3实现
    bf = cv2.BFMatcher()
    # 4实现
    matches = bf.knnMatch(p1, p2, k=2)
    # 5实现
    good = []
    for m1, m2 in matches:
        if m1.distance < 0.8 * m2.distance:
            good.append(m1)
    # 6实现
    if len(good) > 8:
        img1_pts = []
        img2_pts = []
        for m in good:
            img1_pts.append(k1[m.queryIdx].pt)
            img2_pts.append(k2[m.trainIdx].pt)
        img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)
        img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)
        H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)
        return H
    else:
        print('piints is not enough 8!')
        exit()

三、图像拼接

实现步骤:

1、获得图像的四个角点;

2、根据单应性矩阵变换图片;

3、创建一张大图,拼接图像;

4、输出结果

实现代码:

def stitch_img(img1, img2, H):
    # 1实现
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]
    img1_point = np.float32([[0,0], [0,h1], [w1,h1], [w1,0]]).reshape(-1, 1, 2)
    img2_point = np.float32([[0,0], [0,h2], [w2,h2], [w2,0]]).reshape(-1, 1, 2)
    # 2实现
    img1_trans = cv2.perspectiveTransform(img1_point, H)
    # 将img1变换后的角点与img2原来的角点做拼接
    result_point = np.concatenate((img2_point, img1_trans), axis=0)
    # 获得拼接后图像x,y的最小值
    [x_min, y_min] = np.int32(result_point.min(axis=0).ravel()-0.5)
    # 获得拼接后图像x,y的最大值
    [x_max, y_max] = np.int32(result_point.max(axis=0).ravel()+0.5)
    # 平移距离
    trans_dist = [-x_min, -y_min]
    # 构建一个齐次平移矩阵
    trans_array = np.array([[1, 0, trans_dist[0]],
                            [0, 1, trans_dist[1]],
                            [0, 0, 1]])
    # 平移和单应性变换
    res_img = cv2.warpPerspective(img1, trans_array.dot(H), (x_max-x_min, y_max-y_min))
    # 3实现
    res_img[trans_dist[1]:trans_dist[1]+h2,
            trans_dist[0]:trans_dist[0]+w2] = img2
    return res_img

H = get_homo(img1, img2)
res_img = stitch_img(img1, img2, H)
# 4实现
cv2.imshow('result', res_img)
cv2.waitKey(0) 

最终结果图如上图所示,还有待优化点如下:

优化部分难度不大,有兴趣的可以实现一下;

总结

图像拼接作为一个实用性技术经常出现在我们的生活中,特别是全景拍摄以及图像内容拼接;当然,基于传统算法的图像拼接还是会有一些缺陷(速度和效果上),感兴趣的可以了解下基于深度学习的图像拼接算法,期待和大家沟通!

到此这篇关于OpenCV实战之图像拼接的示例代码的文章就介绍到这了,更多相关OpenCV图像拼接内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯