文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

一小时学会TensorFlow2之自定义层

2024-04-02 19:55

关注

概述

通过自定义网络, 我们可以自己创建网络并和现有的网络串联起来, 从而实现各种各样的网络结构.

Sequential

Sequential 是 Keras 的一个网络容器. 可以帮助我们将多层网络封装在一起.

在这里插入图片描述

通过 Sequential 我们可以把现有的层已经我们自己的层实现结合, 一次前向传播就可以实现数据从第一层到最后一层的计算.

格式:


tf.keras.Sequential(
    layers=None, name=None
)

例子:


# 5层网络模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(128, activation=tf.nn.relu),
    tf.keras.layers.Dense(64, activation=tf.nn.relu),
    tf.keras.layers.Dense(32, activation=tf.nn.relu),
    tf.keras.layers.Dense(10)
])

Model & Layer

通过 Model 和 Layer 的__init__call()我们可以自定义层和模型.

Model:


class My_Model(tf.keras.Model):  # 继承Model

    def __init__(self):
        """
        初始化
        """
        
        super(My_Model, self).__init__()
        self.fc1 = My_Dense(784, 256)  # 第一层
        self.fc2 = My_Dense(256, 128)  # 第二层
        self.fc3 = My_Dense(128, 64)  # 第三层
        self.fc4 = My_Dense(64, 32)  # 第四层
        self.fc5 = My_Dense(32, 10)  # 第五层

    def call(self, inputs, training=None):
        """
        在Model被调用的时候执行
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回输出
        """
        
        x = self.fc1(inputs)
        x = tf.nn.relu(x)
        x = self.fc2(x)
        x = tf.nn.relu(x)
        x = self.fc3(x)
        x = tf.nn.relu(x)
        x = self.fc4(x)
        x = tf.nn.relu(x)
        x = self.fc5(x)

        return x

Layer:


class My_Dense(tf.keras.layers.Layer):  # 继承Layer

    def __init__(self, input_dim, output_dim):
        """
        初始化
        :param input_dim:
        :param output_dim:
        """

        super(My_Dense, self).__init__()

        # 添加变量
        self.kernel = self.add_variable("w", [input_dim, output_dim])  # 权重
        self.bias = self.add_variable("b", [output_dim])  # 偏置

    def call(self, inputs, training=None):
        """
        在Layer被调用的时候执行, 计算结果
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回计算结果
        """

        # y = w * x + b
        out = inputs @ self.kernel + self.bias

        return out

案例

数据集介绍

CIFAR-10 是由 10 类不同的物品组成的 6 万张彩色图片的数据集. 其中 5 万张为训练集, 1 万张为测试集.

在这里插入图片描述

完整代码


import tensorflow as tf

def pre_process(x, y):

    # 转换x
    x = 2 * tf.cast(x, dtype=tf.float32) / 255 - 1  # 转换为-1~1的形式
    x = tf.reshape(x, [-1, 32 * 32 * 3])  # 把x铺平

    # 转换y
    y = tf.convert_to_tensor(y)  # 转换为0~1的形式
    y = tf.one_hot(y, depth=10)  # 转成one_hot编码

    # 返回x, y
    return x, y

def get_data():
    """
    获取数据
    :return:
    """

    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()

    # 调试输出维度
    print(X_train.shape)  # (50000, 32, 32, 3)
    print(y_train.shape)  # (50000, 1)

    # squeeze
    y_train = tf.squeeze(y_train)  # (50000, 1) => (50000,)
    y_test = tf.squeeze(y_test)  # (10000, 1) => (10000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(10000, seed=0)
    train_db = train_db.batch(batch_size).map(pre_process).repeat(iteration_num)  # 迭代20次

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)
    test_db = test_db.batch(batch_size).map(pre_process)

    return train_db, test_db

class My_Dense(tf.keras.layers.Layer):  # 继承Layer

    def __init__(self, input_dim, output_dim):
        """
        初始化
        :param input_dim:
        :param output_dim:
        """

        super(My_Dense, self).__init__()

        # 添加变量
        self.kernel = self.add_weight("w", [input_dim, output_dim])  # 权重
        self.bias = self.add_weight("b", [output_dim])  # 偏置

    def call(self, inputs, training=None):
        """
        在Layer被调用的时候执行, 计算结果
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回计算结果
        """

        # y = w * x + b
        out = inputs @ self.kernel + self.bias

        return out


class My_Model(tf.keras.Model):  # 继承Model

    def __init__(self):
        """
        初始化
        """

        super(My_Model, self).__init__()
        self.fc1 = My_Dense(32 * 32 * 3, 256)  # 第一层
        self.fc2 = My_Dense(256, 128)  # 第二层
        self.fc3 = My_Dense(128, 64)  # 第三层
        self.fc4 = My_Dense(64, 32)  # 第四层
        self.fc5 = My_Dense(32, 10)  # 第五层

    def call(self, inputs, training=None):
        """
        在Model被调用的时候执行
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回输出
        """

        x = self.fc1(inputs)
        x = tf.nn.relu(x)
        x = self.fc2(x)
        x = tf.nn.relu(x)
        x = self.fc3(x)
        x = tf.nn.relu(x)
        x = self.fc4(x)
        x = tf.nn.relu(x)
        x = self.fc5(x)

        return x

# 定义超参数
batch_size = 256  # 一次训练的样本数目
learning_rate = 0.001  # 学习率
iteration_num = 20  # 迭代次数
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 优化器
loss = tf.losses.CategoricalCrossentropy(from_logits=True)  # 损失
network = My_Model()  # 实例化网络

# 调试输出summary
network.build(input_shape=[None, 32 * 32 * 3])
print(network.summary())

# 组合
network.compile(optimizer=optimizer,
                loss=loss,
                metrics=["accuracy"])

if __name__ == "__main__":
    # 获取分割的数据集
    train_db, test_db = get_data()

    # 拟合
    network.fit(train_db, epochs=5, validation_data=test_db, validation_freq=1)

输出结果:

Model: "my__model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
my__dense (My_Dense) multiple 786688
_________________________________________________________________
my__dense_1 (My_Dense) multiple 32896
_________________________________________________________________
my__dense_2 (My_Dense) multiple 8256
_________________________________________________________________
my__dense_3 (My_Dense) multiple 2080
_________________________________________________________________
my__dense_4 (My_Dense) multiple 330
=================================================================
Total params: 830,250
Trainable params: 830,250
Non-trainable params: 0
_________________________________________________________________
None
(50000, 32, 32, 3)
(50000, 1)
2021-06-15 14:35:26.600766: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
Epoch 1/5
3920/3920 [==============================] - 39s 10ms/step - loss: 0.9676 - accuracy: 0.6595 - val_loss: 1.8961 - val_accuracy: 0.5220
Epoch 2/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.3338 - accuracy: 0.8831 - val_loss: 3.3207 - val_accuracy: 0.5141
Epoch 3/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.1713 - accuracy: 0.9410 - val_loss: 4.2247 - val_accuracy: 0.5122
Epoch 4/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.1237 - accuracy: 0.9581 - val_loss: 4.9458 - val_accuracy: 0.5050
Epoch 5/5
3920/3920 [==============================] - 42s 11ms/step - loss: 0.1003 - accuracy: 0.9666 - val_loss: 5.2425 - val_accuracy: 0.5097

到此这篇关于一小时学会TensorFlow2之自定义层的文章就介绍到这了,更多相关TensorFlow2自定义层内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯