文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python灰度变换中灰度切割分析实现

2024-04-02 19:55

关注

1. 介绍

灰度切割:增强特定范围的对比度,突出图像中特定范围的亮度(灰度级分层也叫灰度切割)

实现灰度切割的方法有很多种,但基本的方法就两种,其余的方法都是这两个方法的变体

对应的映射函数为:

灰度切割的特殊使用:阈值处理

将感兴趣的物体从背景中分离出来,也叫二值化处理,是第一种方法的变体

2. 灰度切割代码实现

这次没有采用for循环的方式去遍历每个像素点

x[:,:] > a 代表x所有行所有列中大于a的点的位置会为True,再将结果传入自身的坐标中就能找到满足两个阈值中间的点,将这些点替换为255即可

import cv2
import numpy as np
def transform1(x):
    a , b = 150 , 240    #  定义两个阈值,中间部分变换为255
    dst = x.copy()
    dst[(x[:,:] >= a) & (x[:,:] <= b)] = 255        # 中间变换为255
    dst[(x[:,:] <  a) | (x[:,:] >  b)] = 0          # 其余的变换为0
    return dst
def transform2(x):
    a , b = 150 , 240    #  定义两个阈值,中间部分变换为255
    dst = x.copy()
    dst[(x[:,:] >= a) & (x[:,:] <= b)] = 255     # 中间变换255,其余的不变
    return dst
gray = cv2.imread('./img.png',0)
dst1 = transform1(gray)
dst2 = transform2(gray)
cv2.imshow('img',np.hstack((gray,dst1,dst2)))
cv2.waitKey()
cv2.destroyAllWindows()

输出结果

3. 阈值处理

灰度切割的特殊使用是阈值处理,opencv中包含了threshold函数对图像进行阈值处理

语法如下:retval,dst = cv2.threshold(src , thresh , maxval , type)

ret val(return value):处理时采用的阈值大小

dst :处理后的图像

src : 处理前的图像

maxval(max val):产生二值图像后,阈值处理后输出的值,另一个默认是0。例如小于150的输出0,其余的就是这个maxval(一般是255)

type : 阈值处理的类型,有如下的几种类型

type含义
cv2.THRESH_BINARY二值化阈值处理:超出thresh,为255;否则为0
cv2.THRESH_BINARY_INV反二值化阈值处理:超出thresh,为0;否则为255
cv2.THRESH_TOZERO低于阈值零处理:低于thresh,为0;否则灰度值不变
cv2.THRESH_TOZERO_INV 超出阈值零处理:低于thresh,为255;否则为0
cv2.THRESH_TRUNC(truncate截断)截断阈值处理:超过thresh,为thresh;否则不变

代码:

import cv2
import numpy as np
a = np.arange(0,256).reshape(1,-1).astype(np.uint8) # 0-255
img = cv2.resize(a,(800,100),interpolation=cv2.INTER_AREA)    #  创建渐变图像
ret1,img1 = cv2.threshold(img,200,255,cv2.THRESH_BINARY) # 二值化阈值处理
ret2,img2 = cv2.threshold(img,200,255,cv2.THRESH_BINARY_INV) # 反二值化阈值处理
ret3,img3 = cv2.threshold(img,200,255,cv2.THRESH_TOZERO) # 低于阈值零处理
ret4,img4 = cv2.threshold(img,200,255,cv2.THRESH_TOZERO_INV) # 超出阈值零处理
ret5,img5 = cv2.threshold(img,200,255,cv2.THRESH_TRUNC) # 截断阈值处理
cv2.imshow('img',np.vstack((img,img1,img2,img3,img4,img5)))
cv2.waitKey()
cv2.destroyAllWindows()

处理结果:

到此这篇关于Python灰度变换中灰度切割分析实现的文章就介绍到这了,更多相关Python灰度切割内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯