文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

数据浪潮到来之际,我们如何应对?

编程巫师

编程巫师

2024-04-23 23:13

关注

  当许多人力资源软件供应商光说说要预测“雇员离职风险”时,他们有多少人可以证明他们能说到做到以及他们的预测真的有用,你怎么能确保一个供应商所宣称的可以预测员工留任风险是有效的?你应当寻找什么?

数据浪潮到来之际,我们如何应对?_大数据_数据挖掘_虚拟化_编程学习网教育

  以往人们关注了社交,移动和云平台的应用与发展。同样重要的是,在大数据时代之后涌现出的几种辅助技术得到了蓬勃发展,由此产生的基础架构,架构,以及IT挑战表明,整个数据环境发生了模式转变,这种变化是由改变业务进行方式的力量的开始决定的。

  由于这种转变的迅速性和其需求的即时性,许多组织希望在市场上寻找最好的解决方案,并有大量的点解决方案来解决数据景观的大规模系统变化,而这些零碎的方法在短期内提供有限的价值,但是由于供应商的锁定和业务的需求不断变化,长期来说其最终成本更高。

  此外,即时的反应需要不同的工具来管理大数据的每个方面复杂的架构,同时耗费大量的时间。这种方法的根本缺陷是,这样的工具不是明确设计用于大数据,这限制了其在大数据革命后的价值。

  大数据的涌入指出了一系列跨行业因素产生创新的方式,从最初的采纳到分析。这些普遍存在的市场力量对于为数据管理过程的每个方面需要针对大数据技术设计的全面方法是有帮助的。

  大量的数据使得需要一个集中的平台,应对当今和未来的数据驱动实践的每一个方面,最好以终端用户管理的自助服务智能数据湖的形式实现。

  无处不在的市场力量

  了解负责重塑数据环境的市场力量的性质,需要在技术和非技术方面对其进行分析。在前者中,对SMAC(社交,移动,分析和云计算)的依赖代表了访问大数据手段的最大决定因素。这些技术深深地影响了大数据对企业的获取形式和形式。它们最显著的效果可能是它们所使用外部数据创造的前所未有的价值,这反过来又有助于强调这种数据与内部数据的集成。同样,他们负责多元结构数据的突出和其固有价值的企业的复杂性。

  这种复杂数据格式所带来的新颖的复杂性通过单一集中的语义平台的流线型架构而被均匀地缓解。具体来说,通过在RDF图上链接在一起的演进的语义模型来无缝地合并数据源和类型的多样性的多结构化格式。在该框架内,所有数据元素以标准化方式彼此并排表示,代替了对传统方法所要求的各种结构化数据管理不同数据库,数据模型和模式的需要。在这样的独特平台中,其架构和底层基础设施被明显简化,相应地降低了成本。

  非技术力量的典型代表是加速的业务步伐,并在这些缩短的时间框架内解析的数据量。企业进行的速度会受到互联网的普遍性以及它在工作流中根深蒂固的实时响应的巨大影响。这种权宜之计是大数据的其他规定,例如当前流行的传感器数据,移动通信的快速性,以及这些因素能够产生的机会的增加。在这些力量的影响的关键考虑是它们的临时性质。组织可以获得更多的机会,但他们也稍纵即逝,需要对时间敏感的方法来利用数据。

  综合平台解决了这些加速的时间问题,使终端用户在决策和基于分析的行动阶段比零碎的方法更快。对单个节点的语义图表示适当的加速调整模式和重新调整了模型与其他方法的奇异性。加速了整个数据准备过程,这可以垄断最好的数据科学家的时间,或者最基本的以数据为中心的需求过分依赖IT。用户能够投入更多的时间用于数据发现和分析,分享现代企业制定的速度。

  需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2)人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。

     数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。

源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。

  解决常规问题

  上述力量已经塑造了数据环境,由于日益分层的数据管理过程的必要性,导致集中的语义平台广泛的问题。来自SMAC技术的多结构化数据以快速交付的大量数据可能对数据格局的常规领域造成严重破坏,包括:信息治理,数据准备,数据集成,搜索和发现,商业智能和文本分析。

  当考虑采用点解决方法的孤岛方式处理数据的这些方面时,容易成为供应商锁定或昂贵的更新的牺牲品,从而产生大量的停机时间。这种方法最大的问题是,当业务需求或流程改变时,会缺乏灵活性,任务组织重新启动手段实现,这六个重要功能之一。因此,当他们的系统不能产生价值,同时被迫采用更多的系统维护时,组织会花费更多的时间。

  集中式方法的核心价值主张是实现数据使用的所有必要条件的整体方式。通过向现有系统提供必要的覆盖,该方法能够在短期和长期中实现收益。立即获益包括更大程度的企业治理监督,部分通过标准化建模促进,在大多数情况下,包括所有企业数据。随后,数据来源和数据建模更容易解释,并且更易于追踪,这加速了集成尝试。其结果是更快地洞察在组织范围内的治理协议与高度可见的数据,增加对数据资产的信任。

  随后的收益与这种洞察的性质有关,远远超过从点解决方案中收集的收益。语义图的链接数据方法集中于节点之间的关系洞察,这有助于其他技术无与伦比的看似无关的数据元素的背景文化。用户能够有更多的数据,以识别他们之间的关系,以及他们的使用情况,否则是无法发现的。

  此外,这种链接数据方法使数据发现过程在很大程度上实现了自动化,同时提供了探索性分析,用户可以在其中询问和回答尽可能多的问题。分析的结果是全面明确,并且包罗万象。采取零碎的方法,实现这些目标是困难的。。

  预期未来的发展

  培养对集中化需求的最紧迫的营销力量是大数据本身日益扩大的影响。对未来几年生产的数据量的预测表明,其扩张并不会停止和停滞。当考虑连接的设备的数量全部无限地在物联网中产生数据,以及增强现实和虚拟现实的进步,并考虑这样的数据的人工智能选项的可用性时,显而易见的是大数据的规模,速度,结构将在不久的将来大量增加。

  集中的图形感知环境为这些即将到来的技术进步做好准备。使用它作为Hadoop或其他数据湖设置的基础,使其具有在这种工作负载密集型数据驱动部署中持续提供价值所需的规模和性能一致性。更重要的是,它是一个单一的手段简化每个组件的短期解决方案,点解决方案不是为大数据的需求而创建的。这种方法对于目前来说是不够的,并且对于未来大数据应用的更严格的负担当然不可行。这样的实现仅仅支持这样的观念:集中的,关系精明的语义图解表示用于以管理数据为中心的需求的工业力量的融合。

  价格竞争空前激烈,语音业务增长趋缓,快速增长的中国移动通信市场正面临着前所未有的生存压力。中国电信业改革的加速推进形成了新的竞争态势,移动运营市场的竞争广度和强度将进一步加大,这特别表现在集团客户领域。移动信息化和集团客户已然成为未来各运营商应对竞争、获取持续增长的新引擎。随着国内三足鼎立全业务竞争态势和3G牌照发放,各运营商为集团客户提供融合的信息化解决方案将是大势所趋,而移动信息化将成为全面进入信息化服务领域的先导力量。传统移动运营商因此面临着从传统个人业务转向同时拓展集团客户信息化业务领域的挑战。如何应对来自内外部的挑战,迅速以移动信息化业务作为融合业务的竞争利器之一拓展集团客户市场,在新兴市场中立于不败之地,是传统移动运营商需要解决的紧迫问题。

  必要的集中

  从大数据的变革性可以看出,无论何处部署数据都可以提高业务价值。它的增长可以归因于业务加速,支持技术的新生态系统,以及企业中数据类型的多样性的快速发展。它只有单纯的市场力量,需要一个整体的手段来管理每个谨慎的组件转换数据到洞察行动。这些力量的影响是消除对现有基础设施简单地附加一些附加工具的需要。

  相反,它强制要求简化企业架构,实施成本效益好的基础设施,用于包围企业的大量数据类型和技术,并且监督长期重用数据所需的组织范围治理和来源。如今的市场力量促成了对这种整体数据管理的需求同,而未来是强制性的。

相反,它强制要求简化企业架构,实施成本效益好的基础设施,用于包围企业的大量数据类型和技术,并且监督长期重用数据所需的组织范围治理和来源。如今的市场力量促成了对这种整体数据管理的需求同,而未来是强制性的。

  数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。

  Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。

     通过把大数据与区块链相结合,能让区块链中的数据更有价值,也能让大数据的预测分析落实为行动,它们都将是数字经济时代的基石。

     小结:相信最后大家阅读完毕本篇文章后,学到了不少知识吧?当然如果大家还想要了解更多相关方面的详细内容的话呢,请登录编程学习网教育平台咨询哟~

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-大数据
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯