文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

教你使用TensorFlow2对识别验证码

2024-12-03 03:45

关注

 验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册、灌水、发垃圾广告等等 。

数据集来源:https://www.kaggle.com/fournierp/captcha-version-2-images

图片是5个字母的单词,可以包含数字。这些图像应用了噪声(模糊和一条线)。它们是200 x 50 PNG。我们的任务是尝试制作光学字符识别算法的模型。

在数据集中存在的验证码png图片,对应的标签就是图片的名字。

  1. import os 
  2. import numpy as np 
  3. import pandas as pd 
  4. import cv2 
  5. import matplotlib.pyplot as plt 
  6. import seaborn as sns 
  7. # imgaug 图片数据增强 
  8. import imgaug.augmenters as iaa 
  9. import tensorflow as tf 
  10. # Conv2D MaxPooling2D Dropout Flatten Dense BN  GAP 
  11. from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Layer, BatchNormalization, GlobalAveragePooling2D  
  12. from tensorflow.keras.optimizers import Adam 
  13. from tensorflow.keras import Model, Input  
  14. from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau 
  15. # 图片处理器 
  16. from tensorflow.keras.preprocessing.image import ImageDataGenerator 
  17. import plotly.express as px 
  18. import plotly.graph_objects as go 
  19. import plotly.offline as pyo 
  20. pyo.init_notebook_mode() 

对数据进行一个简单的分析,统计图像中大约出现了什么样的符号。

  1. # 数据路径 
  2. DIR = '../input/captcha-version-2-images/samples/samples' 
  3. # 存储验证码的标签 
  4. captcha_list = [] 
  5. characters = {} 
  6. for captcha in os.listdir(DIR): 
  7.     captcha_list.append(captcha) 
  8.     # 每张验证码的captcha_code 
  9.     captcha_code = captcha.split(".")[0] 
  10.     for i in captcha_code: 
  11.         # 遍历captcha_code  
  12.         characters[i] = characters.get(i, 0) +1 
  13. symbols = list(characters.keys()) 
  14. len_symbols = len(symbols) 
  15. print(f'图像中只使用了{len_symbols}符号'
  16.  
  17. plt.bar(*zip(*characters.items())) 
  18. plt.title('Frequency of symbols'
  19. plt.show() 

 

如何提取图像的数据建立X,y??

  1. # 如何提取图像 建立 model  X 的shape  1070 * 50 * 200 * 1  
  2. # y的shape 5 * 1070 * 19 
  3.   
  4. for i, captcha in enumerate(captcha_list): 
  5.     captcha_code = captcha.split('.')[0] 
  6.     # cv2.IMREAD_GRAYSCALE 灰度图 
  7.     captcha_cv2 = cv2.imread(os.path.join(DIR, captcha),cv2.IMREAD_GRAYSCALE) 
  8.     # 缩放 
  9.     captcha_cv2 = captcha_cv2 / 255.0 
  10.     # print(captcha_cv2.shape) (50, 200)  
  11.     # 将captcha_cv2的(50, 200) 切换成(50, 200, 1) 
  12.     captcha_cv2 = np.reshape(captcha_cv2, img_shape) 
  13.     # (5,19) 
  14.     targs = np.zeros((len_captcha, len_symbols)) 
  15.      
  16.     for a, b in enumerate(captcha_code): 
  17.         targs[a, symbols.index(b)] = 1 
  18.     X[i] = captcha_cv2 
  19.     y[:, i] = targs 
  20.  
  21. print("shape of X:", X.shape) 
  22. print("shape of y:", y.shape) 

输出如下

  1. print("shape of X:", X.shape) 
  2. print("shape of y:", y.shape) 

通过Numpy中random 随机选择数据,划分训练集和测试集

  1. # 生成随机数 
  2. from numpy.random import default_rng 
  3.  
  4. rng = default_rng(seed=1) 
  5. test_numbers = rng.choice(1070, size=int(1070*0.3), replace=False
  6. X_test = X[test_numbers] 
  7. X_full = np.delete(X, test_numbers,0) 
  8. y_test = y[:,test_numbers] 
  9. y_full = np.delete(y, test_numbers,1) 
  10.  
  11. val_numbers = rng.choice(int(1070*0.7), size=int(1070*0.3), replace=False
  12.  
  13. X_val = X_full[val_numbers] 
  14. X_train = np.delete(X_full, val_numbers,0) 
  15. y_val = y_full[:,val_numbers] 
  16. y_train = np.delete(y_full, val_numbers,1) 

在此验证码数据中,容易出现过拟合的现象,你可能会想到添加更多的新数据、 添加正则项等, 但这里使用数据增强的方法,特别是对于机器视觉的任务,数据增强技术尤为重要。

常用的数据增强操作:imgaug库。imgaug是提供了各种图像增强操作的python库 https://github.com/aleju/imgaug。

imgaug几乎包含了所有主流的数据增强的图像处理操作, 增强方法详见github

  1. # Sequential(C, R)  尺寸增加了5倍, 
  2. # 选取一系列子增强器C作用于每张图片的位置,第二个参数表示是否对每个batch的图片应用不同顺序的Augmenter list     # rotate=(-8, 8)  旋转 
  3. # iaa.CropAndPad  截取(crop)或者填充(pad),填充时,被填充区域为黑色。 
  4. # px: 想要crop(negative values)的或者pad(positive values)的像素点。 
  5. # (topright, bottom, left
  6. # 当pad_mode=constant的时候选择填充的值 
  7. aug =iaa.Sequential([iaa.CropAndPad( 
  8.     px=((0, 10), (0, 35), (0, 10), (0, 35)), 
  9.     pad_mode=['edge'], 
  10.     pad_cval=1 
  11. ),iaa.Rotate(rotate=(-8,8))]) 
  12.  
  13. X_aug_train = None 
  14. y_aug_train = y_train 
  15. for i in range(40): 
  16.     X_aug = aug(images = X_train) 
  17.     if X_aug_train is not None: 
  18.         X_aug_train = np.concatenate([X_aug_train, X_aug], axis = 0) 
  19.         y_aug_train = np.concatenate([y_aug_train, y_train], axis = 1) 
  20.     else
  21.         X_aug_train = X_aug 

让我们看看一些数据增强的训练图像。

  1. fig, ax = plt.subplots(nrows=2, ncols =5, figsize = (16,16)) 
  2. for i in range(10): 
  3.     index = np.random.randint(X_aug_train.shape[0]) 
  4.     ax[i//5][i%5].imshow(X_aug_train[index],cmap='gray'

 

这次使用函数式API创建模型,函数式API是创建模型的另一种方式,它具有更多的灵活性,包括创建更为复杂的模型。

需要定义inputs和outputs

  1. #函数式API模型创建 
  2. captcha = Input(shape=(50,200,channels)) 
  3. x = Conv2D(32, (5,5),padding='valid',activation='relu')(captcha) 
  4. x = MaxPooling2D((2,2),padding='same')(x) 
  5. x = Conv2D(64, (3,3),padding='same',activation='relu')(x) 
  6. x = MaxPooling2D((2,2),padding='same')(x) 
  7. x = Conv2D(128, (3,3),padding='same',activation='relu')(x) 
  8. maxpool = MaxPooling2D((2,2),padding='same')(x) 
  9. outputs = [] 
  10. for i in range(5): 
  11.     x = Conv2D(256, (3,3),padding='same',activation='relu')(maxpool) 
  12.     x = MaxPooling2D((2,2),padding='same')(x) 
  13.     x = Flatten()(x) 
  14.     x = Dropout(0.5)(x) 
  15.     x = BatchNormalization()(x) 
  16.     x = Dense(64, activation='relu')(x) 
  17.     x = Dropout(0.5)(x) 
  18.     x = BatchNormalization()(x) 
  19.     x = Dense(len_symbols , activation='softmax' , name=f'char_{i+1}')(x) 
  20.     outputs.append(x) 
  21.      
  22. model = Model(inputs = captcha , outputs=outputs) 
  23. # ReduceLROnPlateau更新学习率 
  24. reduce_lr = ReduceLROnPlateau(patience =3, factor = 0.5,verbose = 1) 
  25. model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0005), metrics=["accuracy"]) 
  26. # EarlyStopping用于提前停止训练的callbacks。具体地,可以达到当训练集上的loss不在减小 
  27. earlystopping = EarlyStopping(monitor ="val_loss",   
  28.                              mode ="min", patience = 10, 
  29.                               min_delta = 1e-4, 
  30.                              restore_best_weights = True)  
  31.  
  32. history = model.fit(X_train, [y_train[i] for i in range(5)], batch_size=32, epochs=30, verbose=1, validation_data = (X_val, [y_val[i] for i in range(5)]), callbacks =[earlystopping,reduce_lr]) 

 

下面对model进行一个测试和评估。

  1. score = model.evaluate(X_test,[y_test[0], y_test[1], y_test[2], y_test[3], y_test[4]],verbose=1) 
  2. metrics = ['loss','char_1_loss''char_2_loss''char_3_loss''char_4_loss''char_5_loss''char_1_acc''char_2_acc''char_3_acc''char_4_acc''char_5_acc'
  3.  
  4. for i,j in zip(metrics, score): 
  5.     print(f'{i}: {j}'

具体输出如下:

  1. 11/11 [==============================] - 0s 11ms/step - loss: 0.7246 - char_1_loss: 0.0682 - char_2_loss: 0.1066 - char_3_loss: 0.2730 - char_4_loss: 0.2636 - char_5_loss: 0.0132 - char_1_accuracy: 0.9844 - char_2_accuracy: 0.9657 - char_3_accuracy: 0.9408 - char_4_accuracy: 0.9626 - char_5_accuracy: 0.9938 
  2. loss: 0.7246273756027222 
  3. char_1_loss: 0.06818050146102905 
  4. char_2_loss: 0.10664034634828568 
  5. char_3_loss: 0.27299806475639343 
  6. char_4_loss: 0.26359987258911133 
  7. char_5_loss: 0.013208594173192978 
  8. char_1_acc: 0.9844236969947815 
  9. char_2_acc: 0.9657320976257324 
  10. char_3_acc: 0.940809965133667 
  11. char_4_acc: 0.9626168012619019 
  12. char_5_acc: 0.9937694668769836 

字母1到字母5的精确值都大于

绘制loss和score

  1. metrics_df = pd.DataFrame(history.history) 
  2.  
  3. columns = [col for col in metrics_df.columns if 'loss' in col and len(col)>8] 
  4.  
  5. fig = px.line(metrics_df, y = columns) 
  6. fig.show() 

  1. plt.figure(figsize=(15,8)) 
  2. plt.plot(history.history['loss']) 
  3. plt.plot(history.history['val_loss']) 
  4. plt.title('model loss'
  5. plt.ylabel('loss'
  6. plt.xlabel('epoch'
  7. plt.legend(['train''val'], loc='upper right',prop={'size': 10}) 
  8. plt.show() 

 

  1. # 预测数据 
  2. def predict(captcha): 
  3.     captcha = np.reshape(captcha , (1, 50,200,channels)) 
  4.     result = model.predict(captcha) 
  5.     result = np.reshape(result ,(5,len_symbols)) 
  6.     # 取出最大预测中的输出 
  7.     label = ''.join([symbols[np.argmax(i)] for i in result]) 
  8.     return label 
  9.      
  10. predict(X_test[2]) 
  11. # 25277 

下面预测所有的数据

  1. actual_pred = [] 
  2.  
  3. for i in range(X_test.shape[0]): 
  4.     actual = ''.join([symbols[i] for i in (np.argmax(y_test[:, i],axis=1))]) 
  5.     pred =  predict(X_test[i]) 
  6.     actual_pred.append((actual, pred)) 
  7. print(actal_pred[:10]) 

输出如下:

  1. [('n4b4m''n4b4m'), ('42nxy''42nxy'), ('25257''25277'), ('cewnm''cewnm'), ('w46ep''w46ep'), ('cdcb3''edcb3'), ('8gf7n''8gf7n'), ('nny5e''nny5e'), ('gm2c2''gm2c2'), ('g7fmc''g7fmc')] 
  1. sameCount = 0 
  2. diffCount = 0 
  3. letterDiff = {i:0 for i in range(5)} 
  4. incorrectness = {i:0 for i in range(1,6)} 
  5. for real, pred in actual_pred: 
  6.     # 预测和输出相同 
  7.     if real == pred: 
  8.         sameCount += 1 
  9.     else
  10.         # 失败 
  11.         diffCount += 1 
  12.         # 遍历 
  13.         incorrectnessPoint = 0 
  14.         for i in range(5): 
  15.             if real[i] != pred[i]: 
  16.                 letterDiff[i] += 1 
  17.                 incorrectnessPoint += 1 
  18.         incorrectness[incorrectnessPoint] += 1 
  19.  
  20.  
  21. x = ['True predicted''False predicted'
  22. y = [sameCount, diffCount] 
  23.  
  24. fig = go.Figure(data=[go.Bar(x = x, y = y)]) 
  25. fig.show() 

在预测数据中,一共有287个数据预测正确。

在这里,我们可以看到出现错误到底是哪一个index。

  1. x1 = ["Character " + str(x) for x in range(1, 6)] 
  2.      
  3. fig = go.Figure(data=[go.Bar(x = x1, y = list(letterDiff.values()))]) 
  4. fig.show() 

  

为了计算每个单词的错误数,绘制相关的条形图。

  1. x2 = [str(x) + " incorrect" for x in incorrectness.keys()] 
  2. y2 = list(incorrectness.values()) 
  3.  
  4. fig = go.Figure(data=[go.Bar(x = x2, y = y2)]) 
  5. fig.show() 

 

下面绘制错误的验证码图像,并标准正确和错误的区别。

  1. fig, ax = plt.subplots(nrows = 8, ncols=4,figsize = (16,20)) 
  2. count = 0 
  3. for i, (actual , pred) in enumerate(actual_pred): 
  4.     if actual != pred: 
  5.         img = X_test[i] 
  6.         try: 
  7.             ax[count//4][count%4].imshow(img, cmap = 'gray'
  8.             ax[count//4][count%4].title.set_text(pred + ' - ' + actual) 
  9.             count += 1 
  10.         except
  11.             pass 

 

来源:Python之王内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯