Python线程编程中的Thread该如何理解,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
一、线程编程(Thread)
1、线程基本概念
1.1、什么事线程
线程被称为轻量级的进程
线程也可以使用计算机多核资源,是多任务编程方式
线程是系统分配内核的最小单元
线程可以理解为进程的分支任务
1.2、线程特征
一个进程中可以包含多个线程
线程也是一个运行行为,消耗计算机资源
一个线程中的所有线程共享这个进程的资源
多个线程之间的运行互不影响各自运行
线程的创建和销毁消耗资源远小于进程
各个线程也有自己的ID等特征
二、threading模块创建线程
1、创建线程对象
from threading import Threadt = Thread()功能: 创建线程对象参数: target 绑定线程函数args 元组 给线程函数位置传参kwargs 字典 给线程函数键值传参
2、 启动线程
t.start()
3、 回收线程
t.join([timeout])
4、代码演示
"""thread1.py 线程基础使用步骤:1. 封装线程函数2.创建线程对象3.启动线程4.回收线程"""import osfrom threading import Threadfrom time import sleepa = 1# 线程函数def music(): for i in range(3): sleep(2) print('播放:黄河大合唱 %s' % os.getpid()) global a print("a,",a) a = 1000# 创建线程对象t = Thread(target=music)# 启动线程t.start()for i in range(3): sleep(1) print('播放:beauty love %s' % os.getpid())# 回收线程t.join()print('程序结束')print("a,", a)
5、线程对象属性
t.name
线程名称
t.setName()
设置线程名称
t.getName()
获取线程名称
t.is_alive()
查看线程是否在生命周期
t.daemon
设置主线程和分支线程退出分支线程也退出.要在start前设置 通常不和join 一起使用
代码演示
"""thread3.py线程属性演示"""from threading import Threadfrom time import sleepdef fun(): sleep(3) print('线程属性测试')t = Thread(target=fun, name='ceshi')# 主线程退出分支线程也退出 必须在start前使用 与join 没有意义t.setDaemon(True)t.start()print(t.getName())t.setName('Tedu')print('is alive:', t.is_alive())print('daemon', t.daemon)
6、自定义线程类
创建步骤
继承Thread类
重写 __init__方法添加自己的属性 使用super加载父类属性
重写run方法
使用方法
实例化对象
调佣start自动执行run方法
调佣join回收线程
代码演示
"""自定义线程类例子"""from threading import Thread# 自定义线程类class ThreadClass(Thread): # 重写父类 init def __init__(self, *args, **kwargs): self.attr = args[0] # 加载父类init super().__init__() # 假设需要很多步骤完成功能 def f1(self): print('1') def f2(self): print(2) # 重写run 逻辑调佣 def run(self): self.f1() self.f2()t = ThreadClass()t.start()t.join()
7、一个很重要的练习 我很多不懂
from threading import Threadfrom time import sleep, ctimeclass MyThread(Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None): super().__init__() self.fun = target self.args = args self.kwargs = kwargs def run(self): self.fun(*self.args, **self.kwargs)def player(sec, song): for i in range(3): print("Playing %s : %s" % (song, ctime())) sleep(sec)t = MyThread(target=player, args=(3,), kwargs={'song': '量量'})t.start()t.join()
8、线程间通信
通信方法
线程间使用全局遍历进行通信
共享资源争夺
共享资源:多个进程或者线程都可以操作的资源称为共享资源,对共享资源的操作代码段称为临界区
影响:对公共资源的无序操作可能会带来数据的混乱,或者操作错误.此时往往需要同步互斥机制协调操作顺序
同步互斥机制
同步:同步是一种协作关系,为完成操作,多进程或者线程形成一种协调,按照必要的步骤有序执行操作
互斥:互斥是一种制约关系,当一个进程或者线程占有资源时,会进行加锁处理,此时其它进程线程就无法操作该资源,直到解锁后才能操作
## 9.线程同步互斥方法
1. 线程Event 代码演示
from threading import Event# 创建线程event对象e = Event()# 阻塞等待e被sete.wait([timeout]) # 设置e, 使wait结束阻塞e.set() # 使e回到未被设置状态e.clear() # 查看当前e是否被设置e.is_set()
"""event 线程互斥方法演示"""from threading import Event, Threads = None # 用于通信e = Event()def yzr(): print('杨子荣前来拜山头') global s s = '天王盖地虎' e.set() #操作完共享资源 e设置t = Thread(target=yzr)t.start()print('说对口令就是自己人')e.wait() #阻塞等待 e.set()if s == '天王盖地虎': print('宝塔镇河妖') print('确认过眼神,你是对的人') e.clear()else: print('打死他...')t.join()print('程序结束')
2. 线程锁 Lock代码演示
from threading import Locklock = Lock()创建锁对象lock.acquire() 上锁 如果lock已经上锁再调用会阻塞lock.release() 解锁with lock: 上锁........with 代码块解锁自动解锁
"""thread_lock线程锁演示"""from threading import Thread, Locka = b = 0lock = Lock()def value(): while True: # 上锁 lock.acquire() print('a=%d,b=%d' % (a, b)) if a != b else print('a不等于b') # 解锁 lock.release()t = Thread(target=value)t.start()while True: # with 开始上锁 with lock: a += 1 b += 1 # with 解锁 自动解锁t.join()print('程序结束')
10、死锁及其处理
1.定义
死锁是指两个或者两个以上的线程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,他们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁.
2.图解
3. 死锁产生条件
死锁发生的必要条件
互斥条件:指线程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。
请求和保持条件:指线程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求线程阻塞,但又对自己已获得的其它资源保持不放。
不剥夺条件:指线程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放,通常CPU内存资源是可以被系统强行调配剥夺的。
环路等待条件:指在发生死锁时,必然存在一个线程——资源的环形链,即进程集合{T0,T1,T2,···,Tn}中的T0正在等待一个T1占用的资源;T1正在等待T2占用的资源,……,Tn正在等待已被T0占用的资源。
死锁的产生原因
简单来说造成死锁的原因可以概括成三句话:
当前线程拥有其他线程需要的资源
当前线程等待其他线程已拥有的资源
都不放弃自己拥有的资源
如何避免死锁
死锁是我们非常不愿意看到的一种现象,我们要尽可能避免死锁的情况发生。通过设置某些限制条件,去破坏产生死锁的四个必要条件中的一个或者几个,来预防发生死锁。预防死锁是一种较易实现的方法。但是由于所施加的限制条件往往太严格,可能会导致系统资源利用率。
4.死锁代码演示
from time import sleepfrom threading import Thread, Lock# 交易类class Account: def __init__(self, _id, balance, lock): # 用户 self._id = _id # 存款 self.balance = balance # 锁 self.lock = lock # 取钱 def withdraw(self, amount): self.balance -= amount # 存钱 def deposit(self, amount): self.balance += amount # 余额 def get_balance(self): return self.balanceTom = Account('Tom', 5000, Lock())Alex = Account('Alex', 8000, Lock())def transfer(from_, to, amount): # 锁住自己账户 if from_.lock.acquire(): # 账户减少 from_.withdraw(amount) sleep(0.5) if to.lock.acquire(): to.deposit(amount) to.lock.release() from_.lock.release() print('转账完成 %s给%s转账%d' % (from_._id, to._id, amount))# transfer(Tom, Alex, 1000)t1 = Thread(target=transfer, args=(Tom, Alex, 2000))t2 = Thread(target=transfer, args=(Alex, Tom, 3500))t1.start()t2.start()t1.join()t2.join()print('程序结束')
python线程GIL
1.python线程的GIL问题 (全局解释器锁)
什么是GIL :由于python解释器设计中加入了解释器锁,导致python解释器同一时刻只能解释执行一个线程,大大降低了线程的执行效率。
导致后果: 因为遇到阻塞时线程会主动让出解释器,去解释其他线程。所以python多线程在执行多阻塞高延迟IO时可以提升程序效率,其他情况并不能对效率有所提升。
GIL问题建议
尽量使用进程完成无阻塞的并发行为
不使用c作为解释器 (Java C#)
在无阻塞状态下,多线程程序和单线程程序执行效率几乎差不多,甚至还不如单线程效率。但是多进程运行相同内容却可以有明显的效率提升。
关于Python线程编程中的Thread该如何理解问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注编程网行业资讯频道了解更多相关知识。