今天就跟大家聊聊有关使用Python怎么模拟一个n阶魔方,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
import cv2import numpy as npfrom random import randintclass Cube: def __init__(self, order=3, size=50): # 魔方阶数、显示尺寸 self.img = np.zeros((4 * size * order, 3 * size * order, 3), dtype=np.uint8) self.order = order self.size = size self.len = size * order self.top = [['y'] * order for _ in range(order)] self.front = [['r'] * order for _ in range(order)] self.left = [['b'] * order for _ in range(order)] self.right = [['g'] * order for _ in range(order)] self.back = [['o'] * order for _ in range(order)] self.bottom = [['w'] * order for _ in range(order)] self.axis_rotate = (self.base_rotate_x, self.base_rotate_y, self.base_rotate_z) self.color = {'y': (0, 255, 255), 'r': (0, 0, 255), 'b': (255, 0, 0), 'g': (0, 255, 0), 'o': (0, 128, 255), 'w': (255, 255, 255)} def check(self): # 检测魔方是否还原 for i in range(self.order): for j in range(self.order): if self.top[i][j] != self.top[0][0]: return False if self.back[i][j] != self.back[0][0]: return False if self.front[i][j] != self.front[0][0]: return False if self.left[i][j] != self.left[0][0]: return False if self.right[i][j] != self.right[0][0]: return False if self.bottom[i][j] != self.bottom[0][0]: return False return True def show(self, wait=0): # 显示魔方展开图 for i in range(self.order): for j in range(self.order): # back x, y = self.len + i * self.size, j * self.size cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), self.color[self.back[j][i]], -1) cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), (10, 10, 10), 1) # left x, y = i * self.size, self.len + j * self.size cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), self.color[self.left[j][i]], -1) cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), (10, 10, 10), 1) # top x, y = self.len + i * self.size, self.len + j * self.size cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), self.color[self.top[j][i]], -1) cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), (10, 10, 10), 1) # right x, y = 2 * self.len + i * self.size, self.len + j * self.size cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), self.color[self.right[j][i]], -1) cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), (10, 10, 10), 1) # front x, y = self.len + i * self.size, 2 * self.len + j * self.size cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), self.color[self.front[j][i]], -1) cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), (10, 10, 10), 1) # bottom x, y = self.len + i * self.size, 3 * self.len + j * self.size cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), self.color[self.bottom[j][i]], -1) cv2.rectangle(self.img, (x, y), (x + self.size, y + self.size), (10, 10, 10), 1) cv2.imshow('cube', self.img) cv2.waitKey(wait) def shuffle(self, times): # 打乱魔方 for _ in range(times): self.rotate(randint(0, 2), randint(0, self.order - 1), randint(0, 3)) def rotate(self, axis, index, times): # 旋转魔方:axis轴,第index层,逆时针times次 for _ in range(times): self.axis_rotate[axis](index) def count(self, color='y'): count = 0 for i in range(self.order): for j in range(self.order): if self.top[i][j] == color: count += 1 return count @staticmethod def _column_trans(surface, index, col): for i, r in enumerate(surface): r[index] = col[i] def base_rotate_x(self, index): if index == 0: self.left = [list(c) for c in zip(*self.left)][::-1] elif index == self.order - 1: self.right = [list(c)[::-1] for c in zip(*self.right)] temp = [r[index] for r in self.top] self._column_trans(self.top, index, [r[index] for r in self.front]) self._column_trans(self.front, index, [r[index] for r in self.bottom]) self._column_trans(self.bottom, index, [r[index] for r in self.back]) self._column_trans(self.back, index, temp) def base_rotate_y(self, index): if index == 0: self.back = [list(c)[::-1] for c in zip(*self.back)] elif index == self.order - 1: self.front = [list(c) for c in zip(*self.front)][::-1] temp = self.left[index][::-1] self.left[index] = self.top[index] self.top[index] = self.right[index] self.right[index] = self.bottom[self.order - index - 1][::-1] self.bottom[self.order - index - 1] = temp def base_rotate_z(self, index): if index == 0: self.top = [list(c) for c in zip(*self.top)][::-1] elif index == self.order - 1: self.bottom = [list(c)[::-1] for c in zip(*self.bottom)] temp = self.front[index][::-1] self.front[index] = [r[self.order - index - 1] for r in self.left] self._column_trans(self.left, self.order - index - 1, self.back[self.order - index - 1][::-1]) self.back[self.order - index - 1] = [r[index] for r in self.right] self._column_trans(self.right, index, temp)cube = Cube(3, 50)cube.shuffle(100)while True: cube.show(1) cube.rotate(*(int(c) for c in input('axis,index,times:').split())) if cube.check(): breakprint('Congratulations')cube.show(0)
看完上述内容,你们对使用Python怎么模拟一个n阶魔方有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注编程网行业资讯频道,感谢大家的支持。