文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

pytorch+sklearn实现数据加载的流程

2022-11-21 22:51

关注

之前在训练网络的时候加载数据都是稀里糊涂的放进去的,也没有理清楚里面的流程,今天整理一下,加深理解,也方便以后查阅。

pytorch+sklearn实现数据加载

epoch & batch_size & iteration

优化算法——梯度下降

深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。

Batch gradient descent

第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度,这称为批梯度下降(Batch gradient descent)

这样做至少有 2 个好处:其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。其二,由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。 Full Batch Learning 可以使用 Rprop 只基于梯度符号并且针对性单独更新各权值。

对于更大的数据集,以上 2 个好处又变成了 2 个坏处:其一,随着数据集的海量增长和内存限制,一次性载入所有的数据进来变得越来越不可行。其二,以 Rprop 的方式迭代,会由于各个 Batch 之间的采样差异性,各次梯度修正值相互抵消,无法修正。这才有了后来 RMSProp 的妥协方案。

Stochastic gradient descent

另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降(Stochastic gradient descent)。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,达不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。

Mini-batch gradient decent

为了克服两种方法的缺点,现在一般采用的是一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。

现在用的优化器SGD是stochastic gradient descent的缩写,但不代表是一个样本就更新一回,还是基于mini-batch的。

在小批量梯度下降的情况下,流行的批量大小包括32,64和128个样本。

再谈Batch_Size

在合理范围内,增大 Batch_Size 有何好处?

盲目增大 Batch_Size 有何坏处?

深度学习的第一项任务——数据加载

数据加载流程——重要

以BCICIV_2a数据为例

import mne
import numpy as np
import torch
import torch.nn as nn
class LoadData:
    def __init__(self,eeg_file_path: str):
        self.eeg_file_path = eeg_file_path

    def load_raw_data_gdf(self,file_to_load):
        self.raw_eeg_subject = mne.io.read_raw_gdf(self.eeg_file_path + '/' + file_to_load)
        return self

    def load_raw_data_mat(self,file_to_load):
        import scipy.io as sio
        self.raw_eeg_subject = sio.loadmat(self.eeg_file_path + '/' + file_to_load)

    def get_all_files(self,file_path_extension: str =''):
        if file_path_extension:
            return glob.glob(self.eeg_file_path+'/'+file_path_extension)
        return os.listdir(self.eeg_file_path)
class LoadBCIC(LoadData):
    '''Subclass of LoadData for loading BCI Competition IV Dataset 2a'''
    def __init__(self, file_to_load, *args):
        self.stimcodes=('769','770','771','772')
        # self.epoched_data={}
        self.file_to_load = file_to_load
        self.channels_to_remove = ['EOG-left', 'EOG-central', 'EOG-right']
        super(LoadBCIC,self).__init__(*args)

    def get_epochs(self, tmin=0,tmax=1,baseline=None):
        self.load_raw_data_gdf(self.file_to_load)
        raw_data = self.raw_eeg_subject
        # raw_downsampled = raw_data.copy().resample(sfreq=128)
        self.fs = raw_data.info.get('sfreq')
        events, event_ids = mne.events_from_annotations(raw_data)
        stims =[value for key, value in event_ids.items() if key in self.stimcodes]
        epochs = mne.Epochs(raw_data, events, event_id=stims, tmin=tmin, tmax=tmax, event_repeated='drop',
                            baseline=baseline, preload=True, proj=False, reject_by_annotation=False)
        epochs = epochs.drop_channels(self.channels_to_remove)
        self.y_labels = epochs.events[:, -1] - min(epochs.events[:, -1])
        self.x_data = epochs.get_data()*1e6
        eeg_data={'x_data':self.x_data,
                  'y_labels':self.y_labels,
                  'fs':self.fs}
        return eeg_data
data_path = "/home/pytorch/LiangXiaohan/MI_Dataverse/BCICIV_2a_gdf"
file_to_load = 'A01T.gdf'
'''for BCIC Dataset'''
bcic_data = LoadBCIC(file_to_load, data_path)
eeg_data = bcic_data.get_epochs() # {'x_data':, 'y_labels':, 'fs':}

X = eeg_data.get('x_data')
Y = eeg_data.get('y_labels')
Y.shape

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
X_train.shape

from sklearn.model_selection import StratifiedKFold
train_idx = {}
eval_idx = {}
skf = StratifiedKFold(n_splits=4, shuffle=True)
i = 0
for train_indices, eval_indices in skf.split(X_train, y_train):
    train_idx.update({i: train_indices})
    eval_idx.update({i: eval_indices})
    i += 1
train_idx.get(1).shape

def split_xdata(eeg_data, train_idx, eval_idx):
    x_train=np.copy(eeg_data[train_idx,:,:])
    x_eval=np.copy(eeg_data[eval_idx,:,:])
    x_train = torch.from_numpy(x_train).to(torch.float32)
    x_eval = torch.from_numpy(x_eval).to(torch.float32)
    return x_train, x_eval
def split_ydata(y_true, train_idx, eval_idx):
    y_train = np.copy(y_true[train_idx])
    y_eval = np.copy(y_true[eval_idx])
    y_train = torch.from_numpy(y_train)
    y_eval = torch.from_numpy(y_eval)
    return y_train, y_eval
x_train, x_eval = split_xdata(X_train, train_idx.get(1), eval_idx.get(1))
y_train, y_eval = split_ydata(Y_train, train_idx.get(1), eval_idx.get(1))
y_train.shape

from torch.utils.data import Dataset, DataLoader, TensorDataset
from tqdm import tqdm
def BCICDataLoader(x_train, y_train, batch_size=64, num_workers=2, shuffle=True):
    
    data = TensorDataset(x_train, y_train)

    train_data = DataLoader(dataset=data, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)

    return train_data
train_data = BCICDataLoader(x_train, y_train, batch_size=32)
for inputs, target in tqdm(train_data):
    print(target)

到此数据就读出来了!!!

相关API解释

sklearn.model_selection.train_test_split

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html?highlight=train_test_split

sklearn.model_selection.StratifiedKFold

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html?highlight=stratifiedkfold#sklearn.model_selection.StratifiedKFold

torch.utils.data.TensorDataset

https://pytorch.org/docs/stable/data.html?highlight=tensordataset#torch.utils.data.TensorDataset

torch.utils.data.DataLoader

https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader

参考资料

深度学习中的batch、epoch、iteration的含义

神经网络中Batch和Epoch之间的区别是什么?

谈谈深度学习中的 Batch_Size

到此这篇关于pytorch+sklearn实现数据加载的文章就介绍到这了,更多相关pytorch数据加载内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯