文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python利用Pytorch实现绘制ROC与PR曲线图

2022-12-30 12:00

关注

Pytorch 多分类模型绘制 ROC, PR 曲线(代码 亲测 可用)

ROC曲线

示例代码

import torch
import torch.nn as nn
import os
import numpy as np
from torchvision.datasets import ImageFolder
from utils.transform import get_transform_for_test
from senet.se_resnet import FineTuneSEResnet50
from scipy import interp
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn.metrics import roc_curve, auc, f1_score, precision_recall_curve, average_precision_score
 
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
 
data_root = r'D:\TJU\GBDB\set113\set113_images\test1'    # 测试集路径
test_weights_path = r"C:\Users\admin\Desktop\fsdownload\epoch_0278_top1_70.565_'checkpoint.pth.tar'"    # 预训练模型参数
num_class = 113    # 类别数量
gpu = "cuda:0"  
 
 
# mean=[0.948078, 0.93855226, 0.9332005], var=[0.14589554, 0.17054074, 0.18254866]
def test(model, test_path):
    # 加载测试集和预训练模型参数
    test_dir = os.path.join(data_root, 'test_images')
    class_list = list(os.listdir(test_dir))
    class_list.sort()
    transform_test = get_transform_for_test(mean=[0.948078, 0.93855226, 0.9332005],
                                            var=[0.14589554, 0.17054074, 0.18254866])
    test_dataset = ImageFolder(test_dir, transform=transform_test)
    test_loader = torch.utils.data.DataLoader(
        test_dataset, batch_size=1, shuffle=False, drop_last=False, pin_memory=True, num_workers=1)
    checkpoint = torch.load(test_path)
    model.load_state_dict(checkpoint['state_dict'])
    model.eval()
 
    score_list = []     # 存储预测得分
    label_list = []     # 存储真实标签
    for i, (inputs, labels) in enumerate(test_loader):
        inputs = inputs.cuda()
        labels = labels.cuda()
 
        outputs = model(inputs)
        # prob_tmp = torch.nn.Softmax(dim=1)(outputs) # (batchsize, nclass)
        score_tmp = outputs  # (batchsize, nclass)
 
        score_list.extend(score_tmp.detach().cpu().numpy())
        label_list.extend(labels.cpu().numpy())
 
    score_array = np.array(score_list)
    # 将label转换成onehot形式
    label_tensor = torch.tensor(label_list)
    label_tensor = label_tensor.reshape((label_tensor.shape[0], 1))
    label_onehot = torch.zeros(label_tensor.shape[0], num_class)
    label_onehot.scatter_(dim=1, index=label_tensor, value=1)
    label_onehot = np.array(label_onehot)
 
    print("score_array:", score_array.shape)  # (batchsize, classnum)
    print("label_onehot:", label_onehot.shape)  # torch.Size([batchsize, classnum])
 
    # 调用sklearn库,计算每个类别对应的fpr和tpr
    fpr_dict = dict()
    tpr_dict = dict()
    roc_auc_dict = dict()
    for i in range(num_class):
        fpr_dict[i], tpr_dict[i], _ = roc_curve(label_onehot[:, i], score_array[:, i])
        roc_auc_dict[i] = auc(fpr_dict[i], tpr_dict[i])
    # micro
    fpr_dict["micro"], tpr_dict["micro"], _ = roc_curve(label_onehot.ravel(), score_array.ravel())
    roc_auc_dict["micro"] = auc(fpr_dict["micro"], tpr_dict["micro"])
 
    # macro
    # First aggregate all false positive rates
    all_fpr = np.unique(np.concatenate([fpr_dict[i] for i in range(num_class)]))
    # Then interpolate all ROC curves at this points
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(num_class):
        mean_tpr += interp(all_fpr, fpr_dict[i], tpr_dict[i])
    # Finally average it and compute AUC
    mean_tpr /= num_class
    fpr_dict["macro"] = all_fpr
    tpr_dict["macro"] = mean_tpr
    roc_auc_dict["macro"] = auc(fpr_dict["macro"], tpr_dict["macro"])
 
    # 绘制所有类别平均的roc曲线
    plt.figure()
    lw = 2
    plt.plot(fpr_dict["micro"], tpr_dict["micro"],
             label='micro-average ROC curve (area = {0:0.2f})'
                   ''.format(roc_auc_dict["micro"]),
             color='deeppink', linestyle=':', linewidth=4)
 
    plt.plot(fpr_dict["macro"], tpr_dict["macro"],
             label='macro-average ROC curve (area = {0:0.2f})'
                   ''.format(roc_auc_dict["macro"]),
             color='navy', linestyle=':', linewidth=4)
 
    colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
    for i, color in zip(range(num_class), colors):
        plt.plot(fpr_dict[i], tpr_dict[i], color=color, lw=lw,
                 label='ROC curve of class {0} (area = {1:0.2f})'
                       ''.format(i, roc_auc_dict[i]))
    plt.plot([0, 1], [0, 1], 'k--', lw=lw)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Some extension of Receiver operating characteristic to multi-class')
    plt.legend(loc="lower right")
    plt.savefig('set113_roc.jpg')
    plt.show()
 
 
if __name__ == '__main__':
    # 加载模型
    seresnet = FineTuneSEResnet50(num_class=num_class)
    device = torch.device(gpu)
    seresnet = seresnet.to(device)
    test(seresnet, test_weights_path)

运行结果:

PR曲线

示例代码

import torch
import torch.nn as nn
import os
import numpy as np
from torchvision.datasets import ImageFolder
from utils.transform import get_transform_for_test
from senet.se_resnet import FineTuneSEResnet50
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc, f1_score, precision_recall_curve, average_precision_score
 
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
 
data_root = r'D:\TJU\GBDB\set113\set113_images\test1'    # 测试集路径
test_weights_path = r"C:\Users\admin\Desktop\fsdownload\epoch_0278_top1_70.565_'checkpoint.pth.tar'"    # 预训练模型参数
num_class = 113    # 类别数量
gpu = "cuda:0"    
 
 
# mean=[0.948078, 0.93855226, 0.9332005], var=[0.14589554, 0.17054074, 0.18254866]
def test(model, test_path):
    # 加载测试集和预训练模型参数
    test_dir = os.path.join(data_root, 'test_images')
    class_list = list(os.listdir(test_dir))
    class_list.sort()
    transform_test = get_transform_for_test(mean=[0.948078, 0.93855226, 0.9332005],
                                            var=[0.14589554, 0.17054074, 0.18254866])
    test_dataset = ImageFolder(test_dir, transform=transform_test)
    test_loader = torch.utils.data.DataLoader(
        test_dataset, batch_size=1, shuffle=False, drop_last=False, pin_memory=True, num_workers=1)
    checkpoint = torch.load(test_path)
    model.load_state_dict(checkpoint['state_dict'])
    model.eval()
 
    score_list = []     # 存储预测得分
    label_list = []     # 存储真实标签
    for i, (inputs, labels) in enumerate(test_loader):
        inputs = inputs.cuda()
        labels = labels.cuda()
 
        outputs = model(inputs)
        # prob_tmp = torch.nn.Softmax(dim=1)(outputs) # (batchsize, nclass)
        score_tmp = outputs  # (batchsize, nclass)
 
        score_list.extend(score_tmp.detach().cpu().numpy())
        label_list.extend(labels.cpu().numpy())
 
    score_array = np.array(score_list)
    # 将label转换成onehot形式
    label_tensor = torch.tensor(label_list)
    label_tensor = label_tensor.reshape((label_tensor.shape[0], 1))
    label_onehot = torch.zeros(label_tensor.shape[0], num_class)
    label_onehot.scatter_(dim=1, index=label_tensor, value=1)
    label_onehot = np.array(label_onehot)
    print("score_array:", score_array.shape)  # (batchsize, classnum) softmax
    print("label_onehot:", label_onehot.shape)  # torch.Size([batchsize, classnum]) onehot
 
    # 调用sklearn库,计算每个类别对应的precision和recall
    precision_dict = dict()
    recall_dict = dict()
    average_precision_dict = dict()
    for i in range(num_class):
        precision_dict[i], recall_dict[i], _ = precision_recall_curve(label_onehot[:, i], score_array[:, i])
        average_precision_dict[i] = average_precision_score(label_onehot[:, i], score_array[:, i])
        print(precision_dict[i].shape, recall_dict[i].shape, average_precision_dict[i])
 
    # micro
    precision_dict["micro"], recall_dict["micro"], _ = precision_recall_curve(label_onehot.ravel(),
                                                                              score_array.ravel())
    average_precision_dict["micro"] = average_precision_score(label_onehot, score_array, average="micro")
    print('Average precision score, micro-averaged over all classes: {0:0.2f}'.format(average_precision_dict["micro"]))
 
    # 绘制所有类别平均的pr曲线
    plt.figure()
    plt.step(recall_dict['micro'], precision_dict['micro'], where='post')
 
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title(
        'Average precision score, micro-averaged over all classes: AP={0:0.2f}'
        .format(average_precision_dict["micro"]))
    plt.savefig("set113_pr_curve.jpg")
    # plt.show()
 
 
if __name__ == '__main__':
    # 加载模型
    seresnet = FineTuneSEResnet50(num_class=num_class)
    device = torch.device(gpu)
    seresnet = seresnet.to(device)
    test(seresnet, test_weights_path)

运行结果:

到此这篇关于Python利用Pytorch实现绘制ROC与PR曲线图的文章就介绍到这了,更多相关Python绘制ROC PR曲线图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯