文章目录
安装PyTorch前先看一下(最好也安装一下)安装Tensorflow这篇文章
通过App store安装或者使用命令$ xcode-select --install
安装
$ conda create -n torch-gpuprivate python=3.9$ conda activate torch-gpuprivate
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
通过上述方式安装的PyTorch可能自带的Numpy太低,所以重新安装Numpy:
pip uninstall numpy # 这样会移除刚刚安装的Pytorch以及一些其他的第三方库pip install numpy
或者
conda uninstall numpy # 这样会移除刚刚安装的Pytorch以及一些其他的第三方库conda install numpy
使用“conda list”可以查看此conda环境内的包和各个包的版本。使用“conda deactivate”可退出当前conda环境。
这一步是要将此conda环境“torch-gpuprivate”,添加进Jupyter Lab的Kernel
conda activate torch-gpuprivate //注意替换成自己的虚拟环境名conda install ipykernel //安装ipykernelsudo python -m ipykernel install --name torch-gpuprivate //在ipykernel中安装当前环境conda deactivate
此时打开Jupyter Lab切换Kernel,已出现刚刚安装的“torch-gpuprivate”conda环境。
6.1 测试代码1
import torchimport math# this ensures that the current MacOS version is at least 12.3+print(torch.backends.mps.is_available())# this ensures that the current current PyTorch installation was built with MPS activated.print(torch.backends.mps.is_built())
6.2 测试代码2
dtype = torch.floatdevice = torch.device("mps")# Create random input and output datax = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)y = torch.sin(x)# Randomly initialize weightsa = torch.randn((), device=device, dtype=dtype)b = torch.randn((), device=device, dtype=dtype)c = torch.randn((), device=device, dtype=dtype)d = torch.randn((), device=device, dtype=dtype)learning_rate = 1e-6for t in range(2000): # Forward pass: compute predicted y y_pred = a + b * x + c * x ** 2 + d * x ** 3 # Compute and print loss loss = (y_pred - y).pow(2).sum().item() if t % 100 == 99: print(t, loss)# Backprop to compute gradients of a, b, c, d with respect to loss grad_y_pred = 2.0 * (y_pred - y) grad_a = grad_y_pred.sum() grad_b = (grad_y_pred * x).sum() grad_c = (grad_y_pred * x ** 2).sum() grad_d = (grad_y_pred * x ** 3).sum() # Update weights using gradient descent a -= learning_rate * grad_a b -= learning_rate * grad_b c -= learning_rate * grad_c d -= learning_rate * grad_dprint(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
6.3 在Mac M1中指定使用GPU加速
To run PyTorch code on the GPU, use torch.device(“mps”) analogous to torch.device(“cuda”) on an Nvidia GPU. Hence, in this example, we move all computations to the GPU:
要在 Mac M1的GPU 上运行 PyTorch 代码,使用命令 torch.device("mps")
来指定。这类似于 Nvidia GPU 上的torch.device("cuda")
命令。具体使用方法见下图代码:
来源地址:https://blog.csdn.net/Waldocsdn/article/details/129673645