文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

pandas数据的合并与拼接的实现

2024-04-02 19:55

关注

Pandas包的merge、join、concat方法可以完成数据的合并和拼接,merge方法主要基于两个dataframe的共同列进行合并,join方法主要基于两个dataframe的索引进行合并,concat方法是对series或dataframe进行行拼接或列拼接。

1. Merge方法

pandas的merge方法是基于共同列,将两个dataframe连接起来。merge方法的主要参数:

merges通过设置how参数选择两个dataframe的连接方式,有内连接,外连接,左连接,右连接,下面通过例子介绍连接的含义。

1.1 内连接

  how='inner',dataframe的链接方式为内连接,我们可以理解基于共同列的交集进行连接,参数on设置连接的共有列名。


# 单列的内连接
# 定义df1
import pandas as pd
import numpy as np

df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'feature1':[1,1,2,3,3,1],
            'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],
            'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# print(df1)
# print(df2)
# 基于共同列alpha的内连接
df3 = pd.merge(df1,df2,how='inner',on='alpha')
df3

  取共同列alpha值的交集进行连接。

1.2 外连接

  how='outer',dataframe的链接方式为外连接,我们可以理解基于共同列的并集进行连接,参数on设置连接的共有列名。


# 单列的外连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'feature1':[1,1,2,3,3,1],
                'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],
                        'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# 基于共同列alpha的内连接
df4 = pd.merge(df1,df2,how='outer',on='alpha')
df4

  若两个dataframe间除了on设置的连接列外并无相同列,则该列的值置为NaN。

1.3 左连接

  how='left',dataframe的链接方式为左连接,我们可以理解基于左边位置dataframe的列进行连接,参数on设置连接的共有列名。  


# 单列的左连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'feature1':[1,1,2,3,3,1],
    'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],
                        'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# 基于共同列alpha的左连接
df5 = pd.merge(df1,df2,how='left',on='alpha')
df5

  因为df2的连接列alpha有两个'A'值,所以左连接的df5有两个'A'值,若两个dataframe间除了on设置的连接列外并无相同列,则该列的值置为NaN。

1.4 右连接

  how='right',dataframe的链接方式为左连接,我们可以理解基于右边位置dataframe的列进行连接,参数on设置连接的共有列名。


# 单列的右连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'feature1':[1,1,2,3,3,1],
'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],
                        'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# 基于共同列alpha的右连接
df6 = pd.merge(df1,df2,how='right',on='alpha')
df6

  因为df1的连接列alpha有两个'B'值,所以右连接的df6有两个'B'值。若两个dataframe间除了on设置的连接列外并无相同列,则该列的值置为NaN。

1.5 基于多列的连接算法

  多列连接的算法与单列连接一致,本节只介绍基于多列的内连接和右连接,读者可自己编码并按照本文给出的图解方式去理解外连接和左连接。

多列的内连接:


# 多列的内连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'beta':['a','a','b','c','c','e'],
                    'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'beta':['d','d','b','f'],'pazham':['apple','orange','pine','pear'],
                        'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# 基于共同列alpha和beta的内连接
df7 = pd.merge(df1,df2,on=['alpha','beta'],how='inner')
df7

多列的右连接:


# 多列的右连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'beta':['a','a','b','c','c','e'],
                    'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'beta':['d','d','b','f'],'pazham':['apple','orange','pine','pear'],
                        'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
print(df1)
print(df2)

# 基于共同列alpha和beta的右连接
df8 = pd.merge(df1,df2,on=['alpha','beta'],how='right')
df8

1.6 基于index的连接方法

前面介绍了基于column的连接方法,merge方法亦可基于index连接dataframe。


# 基于column和index的右连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'beta':['a','a','b','c','c','e'],
                    'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],
                        'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])},index=['d','d','b','f'])
print(df1)
print(df2)

# 基于df1的beta列和df2的index连接
df9 = pd.merge(df1,df2,how='inner',left_on='beta',right_index=True)
df9

图解index和column的内连接方法:

设置参数suffixes以修改除连接列外相同列的后缀名。


# 基于df1的alpha列和df2的index内连接
df9 = pd.merge(df1,df2,how='inner',left_on='beta',right_index=True,suffixes=('_df1','_df2'))
df9

2. join方法

  join方法是基于index连接dataframe,merge方法是基于column连接,连接方法有内连接,外连接,左连接和右连接,与merge一致。

index与index的连接:


caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],'B': ['B0', 'B1', 'B2']})
print(caller)print(other)# lsuffix和rsuffix设置连接的后缀名
caller.join(other,lsuffix='_caller', rsuffix='_other',how='inner')

join也可以基于列进行连接:


caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],'B': ['B0', 'B1', 'B2']})
print(caller)
print(other)

# 基于key列进行连接
caller.set_index('key').join(other.set_index('key'),how='inner')

因此,join和merge的连接方法类似,这里就不展开join方法了,建议用merge方法。

3. concat方法

  concat方法是拼接函数,有行拼接和列拼接,默认是行拼接,拼接方法默认是外拼接(并集),拼接的对象是pandas数据类型。

3.1 series类型的拼接方法

行拼接:


df1 = pd.Series([1.1,2.2,3.3],index=['i1','i2','i3'])
df2 = pd.Series([4.4,5.5,6.6],index=['i2','i3','i4'])
print(df1)
print(df2)

# 行拼接
pd.concat([df1,df2])

行拼接若有相同的索引,为了区分索引,我们在最外层定义了索引的分组情况。


# 对行拼接分组
pd.concat([df1,df2],keys=['fea1','fea2'])

列拼接:

默认以并集的方式拼接:


# 列拼接,默认是并集
pd.concat([df1,df2],axis=1)

以交集的方式拼接:


# 列拼接的内连接(交)
pd.concat([df1,df2],axis=1,join='inner')

设置列拼接的列名:


# 列拼接的内连接(交)
pd.concat([df1,df2],axis=1,join='inner',keys=['fea1','fea2'])

对指定的索引拼接:


# 指定索引[i1,i2,i3]的列拼接
pd.concat([df1,df2],axis=1,join_axes=[['i1','i2','i3']])

3.2 dataframe类型的拼接方法

行拼接:


df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2'],'B': ['B0', 'B1', 'B2']})
print(df1)
print(df2)

# 行拼接
pd.concat([df1,df2])

列拼接:


# 列拼接
pd.concat([df1,df2],axis=1)

若列拼接或行拼接有重复的列名和行名,则报错:


# 判断是否有重复的列名,若有则报错
pd.concat([df1,df2],axis=1,verify_integrity = True)

ValueError: Indexes have overlapping values: ['key']

4. 小结

merge和join方法基本上能实现相同的功能,建议用merge。

到此这篇关于pandas数据的合并与拼接的实现的文章就介绍到这了,更多相关pandas数据合并与拼接内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯