前言
JDK 1.5 之前 synchronized 的性能是比较低的,但在 JDK 1.5 中,官方推出一个重量级功能 Lock,一举改变了 Java 中锁的格局。JDK 1.5 之前当我们谈到锁时,只能使用内置锁 synchronized,但如今我们锁的实现又多了一种显式锁 Lock。
前面的文章我们已经介绍了 synchronized,详见以下列表:
《浅谈synchronized加锁this和class的区别》
《Java中的synchronized 优化方法之锁膨胀机制》
《Java中synchronized 的4个优化技巧》
所以本文咱们重点来看 Lock。
Lock 简介
Lock 是一个顶级接口,它的所有方法如下图所示:
它的子类列表如下:
我们通常会使用 ReentrantLock 来定义其实例,它们之间的关联如下图所示:
PS:Sync 是同步锁的意思,FairSync 是公平锁,NonfairSync 是非公平锁。
ReentrantLock 使用
学习任何一项技能都是先从使用开始的,所以我们也不例外,咱们先来看下 ReentrantLock 的基础使用:
public class LockExample {
// 创建锁对象
private final ReentrantLock lock = new ReentrantLock();
public void method() {
// 加锁操作
lock.lock();
try {
// 业务代码......
} finally {
// 释放锁
lock.unlock();
}
}
}
ReentrantLock 在创建之后,有两个关键性的操作:
- 加锁操作:lock()
- 释放锁操作:unlock()
ReentrantLock 中的坑
1.ReentrantLock 默认为非公平锁
很多人会认为(尤其是新手朋友),ReentrantLock 默认的实现是公平锁,其实并非如此,ReentrantLock 默认情况下为非公平锁(这主要是出于性能方面的考虑),
比如下面这段代码:
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
// 创建锁对象
private static final ReentrantLock lock = new ReentrantLock();
public static void main(String[] args) {
// 定义线程任务
Runnable runnable = new Runnable() {
@Override
public void run() {
// 加锁
lock.lock();
try {
// 打印执行线程的名字
System.out.println("线程:" + Thread.currentThread().getName());
} finally {
// 释放锁
lock.unlock();
}
}
};
// 创建多个线程
for (int i = 0; i < 10; i++) {
new Thread(runnable).start();
}
}
}
以上程序的执行结果如下:
从上述执行的结果可以看出,ReentrantLock 默认情况下为非公平锁。因为线程的名称是根据创建的先后顺序递增的,所以如果是公平锁,那么线程的执行应该是有序递增的,但从上述的结果可以看出,线程的执行和打印是无序的,这说明 ReentrantLock 默认情况下为非公平锁。
想要将 ReentrantLock 设置为公平锁也很简单,只需要在创建 ReentrantLock 时,设置一个 true 的构造参数就可以了,如下代码所示:
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
// 创建锁对象(公平锁)
private static final ReentrantLock lock = new ReentrantLock(true);
public static void main(String[] args) {
// 定义线程任务
Runnable runnable = new Runnable() {
@Override
public void run() {
// 加锁
lock.lock();
try {
// 打印执行线程的名字
System.out.println("线程:" + Thread.currentThread().getName());
} finally {
// 释放锁
lock.unlock();
}
}
};
// 创建多个线程
for (int i = 0; i < 10; i++) {
new Thread(runnable).start();
}
}
}
以上程序的执行结果如下:
从上述结果可以看出,当我们显式的给 ReentrantLock 设置了 true 的构造参数之后,ReentrantLock 就变成了公平锁,线程获取锁的顺序也变成有序的了。
其实从 ReentrantLock 的源码我们也可以看出它究竟是公平锁还是非公平锁,ReentrantLock 部分源码实现如下:
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
从上述源码中可以看出,默认情况下 ReentrantLock 会创建一个非公平锁,如果在创建时显式的设置构造参数的值为 true 时,它就会创建一个公平锁。
2.在 finally 中释放锁
使用 ReentrantLock 时一定要记得释放锁,否则就会导致该锁一直被占用,其他使用该锁的线程则会永久的等待下去,所以我们在使用 ReentrantLock 时,一定要在 finally 中释放锁,这样就可以保证锁一定会被释放。
反例
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
// 创建锁对象
private static final ReentrantLock lock = new ReentrantLock();
public static void main(String[] args) {
// 加锁操作
lock.lock();
System.out.println("Hello,ReentrantLock.");
// 此处会报异常,导致锁不能正常释放
int number = 1 / 0;
// 释放锁
lock.unlock();
System.out.println("锁释放成功!");
}
}
以上程序的执行结果如下:
从上述结果可以看出,当出现异常时锁未被正常释放,这样就会导致其他使用该锁的线程永久的处于等待状态。
正例
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
// 创建锁对象
private static final ReentrantLock lock = new ReentrantLock();
public static void main(String[] args) {
// 加锁操作
lock.lock();
try {
System.out.println("Hello,ReentrantLock.");
// 此处会报异常
int number = 1 / 0;
} finally {
// 释放锁
lock.unlock();
System.out.println("锁释放成功!");
}
}
}
以上程序的执行结果如下:
从上述结果可以看出,虽然方法中出现了异常情况,但并不影响 ReentrantLock 锁的释放操作,这样其他使用此锁的线程就可以正常获取并运行了。
3.锁不能被释放多次
lock 操作的次数和 unlock 操作的次数必须一一对应,且不能出现一个锁被释放多次的情况,因为这样就会导致程序报错。
反例
一次 lock 对应了两次 unlock 操作,导致程序报错并终止执行,示例代码如下:
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
// 创建锁对象
private static final ReentrantLock lock = new ReentrantLock();
public static void main(String[] args) {
// 加锁操作
lock.lock();
// 第一次释放锁
try {
System.out.println("执行业务 1~");
// 业务代码 1......
} finally {
// 释放锁
lock.unlock();
System.out.println("锁释锁");
}
// 第二次释放锁
try {
System.out.println("执行业务 2~");
// 业务代码 2......
} finally {
// 释放锁
lock.unlock();
System.out.println("锁释锁");
}
// 最后的打印操作
System.out.println("程序执行完成.");
}
}
以上程序的执行结果如下:
从上述结果可以看出,执行第 2 个 unlock 时,程序报错并终止执行了,导致异常之后的代码都未正常执行。
4.lock 不要放在 try 代码内
在使用 ReentrantLock 时,需要注意不要将加锁操作放在 try 代码中,这样会导致未加锁成功就执行了释放锁的操作,从而导致程序执行异常。
反例
import java.util.concurrent.locks.ReentrantLock;
public class LockExample {
// 创建锁对象
private static final ReentrantLock lock = new ReentrantLock();
public static void main(String[] args) {
try {
// 此处异常
int num = 1 / 0;
// 加锁操作
lock.lock();
} finally {
// 释放锁
lock.unlock();
System.out.println("锁释锁");
}
System.out.println("程序执行完成.");
}
}
以上程序的执行结果如下:
从上述结果可以看出,如果将加锁操作放在 try 代码中,可能会导致两个问题:
- 未加锁成功就执行了释放锁的操作,从而导致了新的异常;
- 释放锁的异常会覆盖程序原有的异常,从而增加了排查问题的难度。
总结
本文介绍了 Java 中的显式锁 Lock 及其子类 ReentrantLock 的使用和注意事项,Lock 在 Java 中占据了锁的半壁江山,但在使用时却要注意 4 个问题:
- 默认情况下 ReentrantLock 为非公平锁而非公平锁;
- 加锁次数和释放锁次数一定要保持一致,否则会导致线程阻塞或程序异常;
- 加锁操作一定要放在 try 代码之前,这样可以避免未加锁成功又释放锁的异常;
- 释放锁一定要放在 finally 中,否则会导致线程阻塞。
到此这篇关于Java中ReentrantLock 4种常见的 坑的文章就介绍到这了,更多相关ReentrantLock 坑内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!