文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Golang限流库、漏桶和令牌桶如何使用

2023-07-05 18:47

关注

本篇内容主要讲解“Golang限流库、漏桶和令牌桶如何使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Golang限流库、漏桶和令牌桶如何使用”吧!

RateLimit 限流中间件

为什么需要限流中间件

在大数据量高并发访问时,经常会出现服务或接口面对大量的请求而导致数据库崩溃的情况,甚至引发连锁反映导致整个系统崩溃。或者有人恶意攻击网站,大量的无用请求出现会导致缓存穿透的情况出现。使用限流中间件可以在短时间内对请求进行限制数量,起到降级的作用,从而保障了网站的安全性。

应对大量并发请求的策略

可以看出在代码已经无法提升的情况下,只能去提升硬件水平。或者改动架构再加一层!也可以使用消息中间件统一处理。而结合看来,限流方案是一种既不需要大幅改动也不需要高额开销的策略。

常见的限流方案

这里主要根据golang的库介绍令牌桶和漏桶的实现原理以及在实际项目中如何应用。

漏桶

引入ratelimit库

go get -u go.uber.org/ratelimit

库函数源代码

// New returns a Limiter that will limit to the given RPS.func New(rate int, opts ...Option) Limiter {return newAtomicBased(rate, opts...)}// newAtomicBased returns a new atomic based limiter.func newAtomicBased(rate int, opts ...Option) *atomicLimiter {// TODO consider moving config building to the implementation// independent code.config := buildConfig(opts)perRequest := config.per / time.Duration(rate)l := &atomicLimiter{perRequest: perRequest,maxSlack:   -1 * time.Duration(config.slack) * perRequest,clock:      config.clock,}initialState := state{last:     time.Time{},sleepFor: 0,}atomic.StorePointer(&l.state, unsafe.Pointer(&initialState))return l}

该函数使用了函数选项模式对多个结构体对象进行初始化

首先根据传入的值来初始化一个桶结构体 rateint传参 (time.Duration(rate)单位为纳秒 = 1/1e9秒)

初始化过程中包括了

// Clock is the minimum necessary interface to instantiate a rate limiter with// a clock or mock clock, compatible with clocks created using// github.com/andres-erbsen/clock.type Clock interface {   Now() time.Time   Sleep(time.Duration)}

同时还需要结构体Clock来记录当前请求的时间now和此刻的请求所需要花费等待的时间sleep

type state struct {   last     time.Time   sleepFor time.Duration}

state 主要用来记录上次执行的时间以及当前执行请求需要花费等待的时间(作为中间状态记录)

最重要的Take逻辑

// Take blocks to ensure that the time spent between multiple// Take calls is on average time.Second/rate.func (t *atomicLimiter) Take() time.Time {   var (      newState state      taken    bool      interval time.Duration   )   for !taken {      now := t.clock.Now()      previousStatePointer := atomic.LoadPointer(&t.state)      oldState := (*state)(previousStatePointer)      newState = state{         last:     now,         sleepFor: oldState.sleepFor,      }      // If this is our first request, then we allow it.      if oldState.last.IsZero() {         taken = atomic.CompareAndSwapPointer(&t.state, previousStatePointer, unsafe.Pointer(&newState))         continue      }      // 计算是否需要进行等待取水操作      newState.sleepFor += t.perRequest(每两滴水之间的间隔时间) - now.Sub(oldState.last)(当前时间与上次取水时间的间隔)       // 如果等待取水时间特别小,就需要松紧度进行维护      if newState.sleepFor < t.maxSlack {         newState.sleepFor = t.maxSlack      }       // 如果等待时间大于0,就进行更新      if newState.sleepFor > 0 {         newState.last = newState.last.Add(newState.sleepFor)         interval, newState.sleepFor = newState.sleepFor, 0      }      taken = atomic.CompareAndSwapPointer(&t.state, previousStatePointer, unsafe.Pointer(&newState))   }   t.clock.Sleep(interval)   // 最后返回需要等待的时间    return newState.last}

实现一个Take方法

t.clock.Sleep(interval)

func (c *clock) Sleep(d time.Duration) {<!--{C}%3C!%2D%2D%20%2D%2D%3E--> time.Sleep(d) }

实际上在一个请求来的时候,限流器就会进行睡眠对应的时间,并在睡眠后将最新取水时间返回。

实际应用(使用Gin框架)

func ratelimit1() func(ctx *gin.Context) {r1 := rate1.New(100)return func(ctx *gin.Context) {now := time.Now()//  Take 返回的是一个 time.Duration的时间if r1.Take().Sub(now) > 0 {// 返回的时间比当前的时间还大,说明需要进行等待// 如果需要等待, 就 time.Sleep(r1.Take().Sub(now())) 然后放行// 如果不需要等待请求时间,就直接进行Abort 然后返回response(ctx, http.StatusRequestTimeout, "rate1 limit...")fmt.Println("rate1 limit...")ctx.Abort()return}// 放行ctx.Next()}}

这里你可以进行选择是否返回。因为Take一定会执行sleep函数,所以当执行take结束后表示当前请求已经接到了水。当前演示使用第一种情况。

测试代码

这里定义了一个响应函数和一个handler函数方便测试

func response(c *gin.Context, code int, info any) {   c.JSON(code, info)}func pingHandler(c *gin.Context) {   response(c, 200, "ping ok~")}

执行go test -run=Run -v先开启一个web服务

func TestRun(t *testing.T) {   r := gin.Default()   r.GET("/ping1", ratelimit1(), pingHandler)   r.GET("/ping2", ratelimit2(), helloHandler)   _ = r.Run(":4399")}

使用接口压力测试工具go-wrk进行测试->tsliwowicz/go-wrk: go-wrk

golang install版本可以直接通过go install github.com/tsliwowicz/go-wrk@latest下载

使用帮助

   Usage: go-wrk <options> <url>
   Options:
    -H       Header to add to each request (you can define multiple -H flags) (Default )
    -M       HTTP method (Default GET)
    -T       Socket/request timeout in ms (Default 1000)
    -body    request body string or @filename (Default )
    -c       Number of goroutines to use (concurrent connections) (Default 10)
    -ca      CA file to verify peer against (SSL/TLS) (Default )
    -cert    CA certificate file to verify peer against (SSL/TLS) (Default )
    -d       Duration of test in seconds (Default 10)
    -f       Playback file name (Default <empty>)
    -help    Print help (Default false)
    -host    Host Header (Default )
    -http    Use HTTP/2 (Default true)
    -key     Private key file name (SSL/TLS (Default )
    -no-c    Disable Compression - Prevents sending the "Accept-Encoding: gzip" header (Default false)
    -no-ka   Disable KeepAlive - prevents re-use of TCP connections between different HTTP requests (Default false)
    -no-vr   Skip verifying SSL certificate of the server (Default false)
    -redir   Allow Redirects (Default false)
    -v       Print version details (Default false)

-t 8个线程 -c 400个连接 -n 模拟1k次请求 -d 替换-n 表示连接时间

输入go-wrk -t=8 -c=400 -n=1000 http://127.0.0.1:4399/ping1

可以稍微等待一下水流积攒否则一个请求也不一定能够响应。

Golang限流库、漏桶和令牌桶如何使用

可以看出,89个请求全部返回。也就是说在一段请求高峰期,不会有请求进行响应。因此我认为既然内部已经睡眠,那么就应该对请求放行处理。限流器实现的比较纯粹!

令牌桶

引入ratelimit

go get -u github.com/juju/ratelimit

初始化

// NewBucket returns a new token bucket that fills at the// rate of one token every fillInterval, up to the given// maximum capacity. Both arguments must be// positive. The bucket is initially full.func NewBucket(fillInterval time.Duration, capacity int64) *Bucket {   return NewBucketWithClock(fillInterval, capacity, nil)}// NewBucketWithClock is identical to NewBucket but injects a testable clock// interface.func NewBucketWithClock(fillInterval time.Duration, capacity int64, clock Clock) *Bucket {   return NewBucketWithQuantumAndClock(fillInterval, capacity, 1, clock)}

进行Bucket桶的初始化。

/ NewBucketWithQuantumAndClock is like NewBucketWithQuantum, but// also has a clock argument that allows clients to fake the passing// of time. If clock is nil, the system clock will be used.func NewBucketWithQuantumAndClock(fillInterval time.Duration, capacity, quantum int64, clock Clock) *Bucket {   if clock == nil {      clock = realClock{}   }    // 填充速率   if fillInterval <= 0 {      panic("token bucket fill interval is not > 0")   }    // 最大令牌容量   if capacity <= 0 {      panic("token bucket capacity is not > 0")   }    // 单次令牌生成量   if quantum <= 0 {      panic("token bucket quantum is not > 0")   }   return &Bucket{      clock:           clock,      startTime:       clock.Now(),      latestTick:      0,      fillInterval:    fillInterval,      capacity:        capacity,      quantum:         quantum,      availableTokens: capacity,   }}

令牌桶初始化过程,初始化结构体 fillInterval(填充速率) cap(最大令牌量) quannum(每次令牌生成量)。

如果三个变量有一个小于或者等于0的话直接进行报错返回。在最开始就将当前令牌数初始化为最大容量。

调用

// TakeAvailable takes up to count immediately available tokens from the// bucket. It returns the number of tokens removed, or zero if there are// no available tokens. It does not block.func (tb *Bucket) TakeAvailable(count int64) int64 {   tb.mu.Lock()   defer tb.mu.Unlock()   return tb.takeAvailable(tb.clock.Now(), count)}

调用TakeAvailable函数,传入参数为需要取出的令牌数量,返回参数是实际能够取出的令牌数量。

内部实现

// takeAvailable is the internal version of TakeAvailable - it takes the// current time as an argument to enable easy testing.func (tb *Bucket) takeAvailable(now time.Time, count int64) int64 {   // 如果需要取出的令牌数小于等于零,那么就返回0个令牌    if count <= 0 {      return 0   }    // 根据时间对当前桶中令牌数进行计算   tb.adjustavailableTokens(tb.currentTick(now))    // 计算之后的令牌总数小于等于0,说明当前令牌不足取出,那么就直接返回0个令牌   if tb.availableTokens <= 0 {      return 0   }    // 如果当前存储的令牌数量多于请求数量,那么就返回取出令牌数   if count > tb.availableTokens {      count = tb.availableTokens   }    // 调整令牌数   tb.availableTokens -= count   return count}

调整令牌

// adjustavailableTokens adjusts the current number of tokens// available in the bucket at the given time, which must// be in the future (positive) with respect to tb.latestTick.func (tb *Bucket) adjustavailableTokens(tick int64) {   lastTick := tb.latestTick   tb.latestTick = tick    // 如果当前令牌数大于最大等于容量,直接返回最大容量   if tb.availableTokens >= tb.capacity {      return   }    // 当前令牌数 += (当前时间 - 上次取出令牌数的时间) * quannum(每次生成令牌量)   tb.availableTokens += (tick - lastTick) * tb.quantum    // 如果当前令牌数大于最大等于容量, 将当前令牌数 = 最大容量 然后返回 当前令牌数   if tb.availableTokens > tb.capacity {      tb.availableTokens = tb.capacity   }   return}

实现原理

加锁 defer 解锁

判断count(想要取出的令牌数) 是否小于等于 0,如果是直接返回 0

调用函数adjustTokens 获取可用的令牌数量,该函数实现原理:

如果当前可以取出的令牌数小于等于0 直接返回 0

如果当前可以取出的令牌数小于当前想要取出的令牌数(count) count = 当前可以取出的令牌数

当前的令牌数 -= 取出的令牌数(count)

返回 count

额外介绍

take函数,能够返回等待时间和布尔值,允许欠账,没有令牌也可以取出。

func (tb *Bucket) Take(count int64) time.Duration

takeMaxDuration函数,可以根据最大等待时间来进行判断。

func (tb *Bucket) TakeMaxDuration(count int64, maxWait time.Duration) (time.Duration, bool)

测试

func ratelimit2() func(ctx *gin.Context) {// 生成速率 最大容量r2 := rate2.NewBucket(time.Second, 200)return func(ctx *gin.Context) {//r2.Take() // 允许欠账,令牌不够也可以接收请求if r2.TakeAvailable(1) == 1 {// 如果想要取出1个令牌并且能够取出,就放行ctx.Next()return}response(ctx, http.StatusRequestTimeout, "rate2 limit...")ctx.Abort()return}}

Golang限流库、漏桶和令牌桶如何使用

由于压测速度过于快速,在实际过程中可以根据调整令牌生成速率来进行具体限流!

到此,相信大家对“Golang限流库、漏桶和令牌桶如何使用”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯