文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python pandas 数据排序的几种常用方法

2024-04-02 19:55

关注

前言:

pandas中排序的几种常用方法,主要包括sort_index和sort_values。

基础数据:

import pandas as pd
import numpy as np
data = {
    'brand':['Python', 'C', 'C++', 'C#', 'Java'],
    'B':[4,6,8,12,10],
    'A':[10,2,5,20,16],
    'D':[6,18,14,6,12],
    'years':[4,1,1,30,30],
    'C':[8,12,18,8,2]
}
index = [9,3,4,5,2]
df = pd.DataFrame(data=data, index = index)
print("df数据:\n", df, '\n')

out:

df数据:
     A   B   C   D   brand  years
9  10   4   8   6  Python      4
3   2   6  12  18       C      1
4   5   8  18  14     C++      1
5  20  12   8   6      C#     30
2  16  10   2  12    Java     30 

按行索引排序:

print("按行索引排序:\n", df.sort_index(), '\n')

out:

按行索引排序:
     A   B   C   D   brand  years
2  16  10   2  12    Java     30
3   2   6  12  18       C      1
4   5   8  18  14     C++      1
5  20  12   8   6      C#     30
9  10   4   8   6  Python      4

通过设置参数ascending可以设置升序或者降序排序,默认情况下ascending=True,为升序排序。

设置ascending=False时,为降序排序。

print("按行索引降序排序:\n", df.sort_index(ascending=False), '\n')

out:

按行索引降序排序:
     A   B   C   D   brand  years
9  10   4   8   6  Python      4
5  20  12   8   6      C#     30
4   5   8  18  14     C++      1
3   2   6  12  18       C      1
2  16  10   2  12    Java     30

按列的名称排序:

设置参数axis=1实现按列的名称排序:

print("按列名称排序:\n", df.sort_index(axis=1), '\n')

out:

按列名称排序:
     A   B   C   D   brand  years
9  10   4   8   6  Python      4
3   2   6  12  18       C      1
4   5   8  18  14     C++      1
5  20  12   8   6      C#     30
2  16  10   2  12    Java     30

同样,也可以设置ascending参数:

print("按列名称排序:\n", df.sort_index(axis=1, ascending=False), '\n')

out:

按列名称排序:
    years   brand   D   C   B   A
9      4  Python   6   8   4  10
3      1       C  18  12   6   2
4      1     C++  14  18   8   5
5     30      C#   6   8  12  20
2     30    Java  12   2  10  16

按数值排序:

sort_values()是pandas中按数值排序的函数:

1、按单个列的值排序

sort_values()中设置单个列的列名,可以对单个列进行排序,通过设置ascending可以设置升序或者降序。

print("按列名称A排序:\n", df.sort_values('A'), '\n')

out:

按列名称排序:
     A   B   C   D   brand  years
3   2   6  12  18       C      1
4   5   8  18  14     C++      1
9  10   4   8   6  Python      4
2  16  10   2  12    Java     30
5  20  12   8   6      C#     30

设置ascending=False进行降序排序:

print("按列名称A降序排序:\n", df.sort_values('A', ascending=False), '\n')

out:

按列名称A降序排序:
     A   B   C   D   brand  years
5  20  12   8   6      C#     30
2  16  10   2  12    Java     30
9  10   4   8   6  Python      4
4   5   8  18  14     C++      1
3   2   6  12  18       C      1

按多个列的值排序:

先按year列的数据进行升序排序,year列相同的再看B列进行升序排序

print("按多个列排序:\n", df.sort_values(['years', 'B']), '\n')

out:

按多个列排序:
     A   B   C   D   brand  years
3   2   6  12  18       C      1
4   5   8  18  14     C++      1
9  10   4   8   6  Python      4
2  16  10   2  12    Java     30
5  20  12   8   6      C#     30 

也可以分别设置列的升序、降序来排序:

years列为升序,B列为降序。

print("按多个列排序:\n", df.sort_values(['years', 'B'], ascending=[True, False]), '\n')

out:

按多个列排序:
     A   B   C   D   brand  years
4   5   8  18  14     C++      1
3   2   6  12  18       C      1
9  10   4   8   6  Python      4
5  20  12   8   6      C#     30
2  16  10   2  12    Java     30

inplace使用:

inplace=True:不创建新的对象,直接对原始对象进行修改;默认是False,即创建新的对象进行修改,原对象不变,和深复制和浅复制有些类似。

df.sort_values('A', inplace=True)
print("按A列排序:\n", df, '\n')

out:

按A列排序:
     A   B   C   D   brand  years
3   2   6  12  18       C      1
4   5   8  18  14     C++      1
9  10   4   8   6  Python      4
2  16  10   2  12    Java     30
5  20  12   8   6      C#     30

缺失值:

含有nan值的数据排序:

data = {
    'brand':['Python', 'C', 'C++', 'C#', 'Java'],
    'B':[4,6,8,np.nan,10],
    'A':[10,2,5,20,16],
    'D':[6,18,14,6,12],
    'years':[4,1,1,30,30],
    'C':[8,12,18,8,2]
}
index = [9,3,4,5,2]
df = pd.DataFrame(data=data, index = index)
print("df数据:\n", df, '\n')

out:

df数据:
     A     B   C   D   brand  years
9  10   4.0   8   6  Python      4
3   2   6.0  12  18       C      1
4   5   8.0  18  14     C++      1
5  20   NaN   8   6      C#     30
2  16  10.0   2  12    Java     30

B列含有nan值,对B列进行排序,缺失值排在最前面:

print("按B列排序:\n", df.sort_values('B', na_position='first'), '\n')

按B列排序:
     A     B   C   D   brand  years
5  20   NaN   8   6      C#     30
9  10   4.0   8   6  Python      4
3   2   6.0  12  18       C      1
4   5   8.0  18  14     C++      1
2  16  10.0   2  12    Java     30

包含缺失值,缺失值排在最后:

print("按B列排序:\n", df.sort_values('B', na_position='last'), '\n')

out:

按B列排序:
     A     B   C   D   brand  years
9  10   4.0   8   6  Python      4
3   2   6.0  12  18       C      1
4   5   8.0  18  14     C++      1
2  16  10.0   2  12    Java     30
5  20   NaN   8   6      C#     30

到此这篇关于python pandas 数据排序的几种常用方法的文章就介绍到这了,更多相关python pandas内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯