一是制定的数据标准本身有问题。有些标准一味地追求先进,向行业领先者看齐,标准大而全,脱离实际的数据情况,导致很难落地。
二是在标准化推进过程中出了问题。这是笔者重点阐述的原因,主要有以下几种情况:
- 对建设数据标准的目的不明确。某些组织建设数据标准,其目的不是为了统一组织内部的数据口径,指导信息系统建设,提高数据质量,更可信地处理和交换数据,而是应付上级和监管机构的检查,因此他们需要的只是一堆标准文件和制度文件,根本就没有执行的计划。
- 过分依赖咨询公司。一些组织没有建设数据标准的能力,因此请咨询公司来帮忙规划和执行。一旦咨询公司撤离,组织依然缺乏将这些标准落地的能力和条件。
- 对数据标准化的难度估计不足。很多公司上来就说要做数据标准,却不知道数据标准的范围很大,很难以一个项目的方式都做完,而是一个持续推进的长期过程,结果是客户越做标准化,遇到的阻力越大,困难就更多,最后自己都没有信心了,转而把前期梳理的一堆成果束之高阁。这是最容易出现的问题。
- 缺乏落地的制度和流程规划。数据标准的落地,需要多个系统、部门的配合才能完成。如果只梳理出数据标准,但是没有规划具体的落地方案,缺乏技术、业务部门、系统开发商的支持,尤其是缺乏领导层的支持,是无论如何也不可能落地的。
- 组织管理水平不足。数据标准落地的长期性、复杂性、系统性的特点,决定了推动落地的组织机构的管理能力必须保持在很高的水平线上,且架构必须持续稳定,才能有序地不断推进。
以上这些原因,导致数据标准化工作很难开展,更难取得较好的成效。数据标准化难落地,是数据资产管理面临的现状,不容回避。