文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

三种用python进行线性/非线性拟合的方法

2023-09-08 11:45

关注

目录

散热曲线示例

1. 简单线性回归

使用回归分析绘制拟合曲线是一种常见的方法,简单线性回归就是其中的一种。简单线性回归可以通过最小二乘法来计算回归系数。以下是一个使用简单线性回归来拟合数据的代码示例:

import numpy as npimport matplotlib.pyplot as pltx = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])y = np.array([2.5, 4.5, 4.8, 5.5, 6.0, 7.0, 7.8, 8.0, 9.0, 9.5])# 计算回归系数slope, intercept = np.polyfit(x, y, 1)# 绘制拟合曲线plt.scatter(x, y)plt.plot(x, slope * x + intercept, color='red')plt.show()

在该代码中,np.polyfit函数可以用来计算简单线性回归的回归系数。plot函数用来绘制拟合曲线,scatter函数绘制原始数据点。

线性回归

2. 多项式回归

使用多项式回归是一种常用方法,它可以用来拟合更加复杂的数据集。以下是一个使用多项式回归来拟合数据的代码示例:

import numpy as npimport matplotlib.pyplot as pltx = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])y = np.array([2.5, 4.5, 4.8, 5.5, 6.0, 7.0, 7.8, 8.0, 9.0, 9.5])# 计算多项式回归系数coefs = np.polyfit(x, y, 3)# 使用np.poly1d函数来生成一个多项式拟合对象poly = np.poly1d(coefs)# 生成新的横坐标,使得拟合曲线更加平滑new_x = np.linspace(min(x), max(x), 1000)# 绘制拟合曲线plt.scatter(x, y)plt.plot(new_x, poly(new_x), color='red')plt.show()

与简单线性回归不同,多项式回归可以拟合更加复杂的数据集。在该代码中,np.polyfit函数计算多项式回归系数,np.poly1d函数生成一个多项式拟合对象。plot函数用来绘制拟合曲线,scatter函数绘制原始数据点。

多项式回归

3. 非线性回归

使用非线性回归是一种更加复杂的拟合方法,在实际应用中可以用来拟合更加复杂的非线性数据。以下是一个使用非线性回归来拟合数据的代码示例:

import numpy as npimport matplotlib.pyplot as pltfrom scipy.optimize import curve_fitdef func(x, a, b, c):    return a * np.exp(-b * x) + c# 生成模拟数据x_data = np.linspace(0, 4, 50)y_data = func(x_data, 2.5, 1.3, 0.5) + 0.2 * np.random.normal(size=len(x_data))# 使用curve_fit函数来拟合非线性数据popt, pcov = curve_fit(func, x_data, y_data)# 画出原始数据和拟合曲线plt.scatter(x_data, y_data, label="Data")plt.plot(x_data, func(x_data, *popt), color='red', label="Fitted curve")plt.legend()plt.show()

在该代码中,使用了Scipy库中的curve_fit函数来拟合非线性数据。curve_fit函数中第一个参数是非线性函数,第二个参数是拟合数据的横坐标,第三个参数是拟合数据的纵坐标。

非线性回归

总结

以上是Python中的三种常用拟合曲线方法。简单线性回归可以拟合线性关系的数据,多项式回归可以拟合更加复杂的数据,而非线性回归则可以用来拟合非线性数据。我们可以根据实际需要选择不同的方法来拟合数据。

来源地址:https://blog.csdn.net/weixin_67016521/article/details/130119425

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯