用法:
matplot.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)
参数解释:
x,y
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0.2, 2.0, 0.01)
y1 = np.sin(2*np.pi*x)
y2 = np.sin(4*np.pi*x)
plt.figure(1)
plt.subplot(211)
plt.plot(x,y1)
plt.subplot(212)
plt.plot(x,y2)
plt.show()
color
Colors的值:
import numpy as np
import matplotlib.pyplot as plt
# 需要解释下,下面两行代码是防止出现中文时,会报警告
# 因为我们的title里面写的是中文
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus']=False
x = np.arange(0.2, 2.0, 0.01)
y1 = np.sin(2*np.pi*x)
y2 = np.sin(4*np.pi*x)
plt.figure(1)
plt.subplot(211)
plt.title('不添加颜色')
plt.plot(x,y1)
plt.subplot(212)
plt.title('添加颜色')
plt.plot(x,y2,color='c')
plt.show()
linstyle
'b' # blue markers with default shape
'or' # red circles
'-g' # green solid line
'--' # dashed line with default color
'^k:' # black triangle_up markers connected by a dotted line
import numpy as np
import matplotlib.pyplot as plt
plt.figsize=((10,8))
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus']=False
x = [1, 2, 3, 4]
y = [1, 4, 9, 16]
plt.subplot(221)
plt.title('样式: -')
plt.plot(x,y,'-')
plt.subplot(222)
plt.title('样式: --')
plt.plot(x,y,'--')
plt.subplot(223)
plt.title('样式: -.')
plt.plot(x, y, '-.')
plt.subplot(224)
plt.title('样式: :')
plt.plot(x, y, ':')
plt.show()
缩写方式
import numpy as np
import matplotlib.pyplot as plt
x = [1, 2, 3, 4]
y = [1, 4, 9, 16]
plt.subplot()
# 线形状 '-',颜色'g'
plt.plot(x, y, '-g')
plt.show()
marker, markersize
marker在scatter里面我已经有所解释过了,有好多种情况,可以在scatter散点图这里会将颜色和marker连接起来,可以有个很清楚的了解,并且较为清楚,也是缩写
import matplotlib.pyplot as plt
plt.figsize=((12,6))
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus']=False
x = [1, 2, 3, 4]
y = [1, 4, 9, 16]
plt.subplot(131)
plt.title('默认情况')
plt.plot(x, y)
plt.subplot(132)
plt.title('红色圆圈')
# marker为o 颜色r
plt.plot(x, y, 'or')
plt.subplot(133)
plt.title('正三角黑色')
# marker为^ 颜色k->black
plt.plot(x, y, '^k')
plt.show()
label
标签,这个在所有图形中都可以使用,在这里展示下,包括之前的alpha也是,都所属**kwargs里面,在任何绘图中都可以添加,legend为图例
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-np.pi/2, np.pi/2, 31)
y = np.cos(x)**3
# 1) remove points where y > 0.7
x2 = x[y <= 0.7]
y2 = y[y <= 0.7]
# 2) mask points where y > 0.7
y3 = np.ma.masked_where(y > 0.7, y)
# 3) set to NaN where y > 0.7
y4 = y.copy()
y4[y3 > 0.7] = np.nan
plt.plot(x*0.1, y, 'o-', color='lightgrey', label='No mask')
plt.plot(x2*0.4, y2, 'o-', label='Points removed')
plt.plot(x*0.7, y3, 'o-', label='Masked values')
plt.plot(x*1.0, y4, 'o-', label='NaN values')
plt.legend()
plt.show()
下面就是一些案例
一次性绘制三个线条图
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0., 5., 0.2)
# 红色虚线,蓝色方块,浅蓝六边形
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'cH')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
x2 = np.linspace(0.0, 2.0)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(211)
plt.plot(x1, y1, 'o-')
plt.subplot(212)
plt.plot(x1, y1, '.-')
plt.show()
到此这篇关于利用python绘制线型图的文章就介绍到这了,更多相关python线型图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!